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Abstract 

In wireless channels there are Non-idealities that cause distortion to the mobile signal 

such as long distance, multipath and the noise that the channel added to the transmitted 

signal. This paper utilizes adaptive filtering techniques to solve this channel distortion. 

Consequently, an adaptive FIR blind identification architecture is developed using four 

adaptive algorithms to estimate wireless time invariant as well as time varying channels. 

The four adaptive algorithms are least mean square (LMS), normalized least square 

(NLMS), recursive least square (RLS) and affine projection algorithm (AFP). The results 

shows that the RLS outperforms other algorithm in wireless time-invariant channel with 

least mean square error of (0.0116), and AFA outperforms other algorithms in wireless 

time-variant channel with least square error of  (0.433) and fastest convergence rate. The 

implications of this wireless channel identification architecture are feasible in detecting 

next-generation 5G channels and underwater acoustic channel to provide the channel 

information for further signal processing. 

  

Keywords- least mean square (LMS), normalized least square (NLMS), recursive least 

square (RLS), affine projection algorithm (AFP), finite impulse response (FIR), wireless 

channel, adaptive identification architecture, wireless underwater channel, 5G channel.  

 

1. Introduction  

Wireless digital communications often require the identification of the channel impulse 

response that can facilitate channel equalization and maximum likelihood sequence 

detection [1, 2]. 

Adaptive wireless channel identification is typically utilized when simpler techniques [3-

7] for received sequence detection cannot be used in tele-communication systems.  The 

wireless channel distorts the conformity of the transmitted signals making the decoding of 

the received information difficult. In such cases where the effects of the channel 

distortion can be modeled as a linear FIR filter, the transmitted symbols is known as 

Inter-Symbol Interference (ISI). Thus, an adaptive filter can be developed to model the 

effects of the channel ISI for purposes of decoding the received information in an optimal 

manner. Where, the transmitter sends to the receiver a sample sequence x(n) that is known 

to both the transmitter and receiver. The receiver then attempts to model the received 

signal, y(n), using an adaptive filter whose input is the known transmitted sequence, x(n), 

and output signal, d(n). After a suitable period of adaptation, the optimal coefficients of 
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the adaptive filter, h(n), are computed and then utilized in a procedure to decode future 

signals transmitted across this wireless channel. This blind channel identification is 

achieved by using only the channel output without using a training sequence.  

To simulate that, two types of wireless channels, time-invariant and time-variant, are 

mathematically modelled. Then, generic adaptive wireless channel architecture is 

designed using adaptive FIR filtering algorithms of least mean square, normalized least 

mean square, recursive least square and affine projection. 

The blind channel identification methods using the second-order cyclostationary statistics 

were initiated by Tong et al. [8, 9]. Those have attracted research attention [10-13]. The 

contributions of this paper can be short listed as following; 

 Time-invariant channel and time-variant channel are mathematically modeled and 

adaptively blind identified using four methods. 

 Performance indices comparisons of the computer simulated models are presented. 

 
2. Adaptive filtering algorithms 

 

The adaptive wireless channel identification architecture utilized four adaptive 

algorithms; least mean square (LMS), normalized least square (NLMS), recursive least 

square (RLS) and affine projection algorithm (AFP). 

 
3. Least Mean Square (LMS) 

The LMS algorithm is widely used in deferent application due to low computation 

complexity, and it is the part of the stochastic gradient algorithms [14]. This algorithm 

has two input and an output. The inputs are the known signal and the error signal, as the 

deference between the FIR filter output and the desired signal to be identify. The output 

signal is the updated filter coefficients.  

Definition of the Adaptive LMS Algorithm:  

 

 

 

  Where, h(n) is the filter coefficients at the nth instant.  

             x(n) is observed signal vector at nth instant.  

In this LMS algorithm the Nth order FIR filter coefficients can be adapted according to 

the following pseudocode form;  

          Parameters: N = taps number, µ = step-size 

 
            S is the maximum value of the input power 

spectral 

         Initialization: when the tap-weight vector is known, set   ,  

                                                               Otherwise, set . 

        Data: Given x(n) is the input M ×1vector at time n 

               d(n) is the desired response at time step n. 

       Computation:  

for n = 1: N; % N = length (x);  

y(n) = h(n-1) x
T
(n);  
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e(n) = d(n) – y(n);  

h(n) = h(n-1) + μ × e(n) × x(n);  

end 

 

Where, y(n) is the FIR Filter output by matrix multiplication.  

 

3.1 Normalized Least Mean Square (NLMS) 

In many application, the input is huge and the LMS algorithm could not adapting the 

output because of step size. Thus, NLMS is developed to overcome this problem by the 

normalizing of step size according to input vector energy [15]. The NLMS algorithm can 

be state in pseudocode form as following; 

Parameters: N = taps number and µ = adaptation constant 

 
                                 Where, = error signal power,         

                                                                             = 

input signal power,                                                                           

         = mean-square deviation.          

Initialization: when the tap-weight vector is known, set  

 ,    

                                                                  Otherwise, set 

 

           Data: Given:  = M×1 tap input vector at time n. 

                      d(n) = desired response at time step . 

          Computation:  
for n = 1: N; % N = length (x);  

y(n) = h(n-1) x
T
(n); % Filter output by matrix multiplication  

e(n) = d(n) – y(n);  

h(n) = h(n-1) +  × e(n) × x(n);  

                        end   
                                               

 Where    is the squared norm. 

 

3.2 Recursive Least Square (RLS) 

This algorithm is useful when the environment is very dynamic and requires speed 

response [16].  For stationary signals, the RLS filter converges to the same optimal filter 

coefficients as the Wiener filter. For non-stationary signals, the RLS filter tracks the time 

diversity of the process [17]. The RLS algorithm can be state in pseudocode form as 

following; 

Parameters: N = taps number  

                     µ = forgetting parameter, where,  

                                   α = regulation parameter,  
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                        where  

       

 Initialization: set     

                     And,   

           Data: Given,  = M×1 tap input vector at sample time n. 

                   d(n) = desired response at sample time n. 

         Computation:  
for n = 1: N; % N = length (x);  

y(n) = h
T
(n-1) x (n); % Filter output by matrix multiplication  

e(n) = d(n) – y(n);  

T(n) = R(n-1)x(n); 

 
h

T
(n) = h

T
(n-1) + l(n) e(n); 

  

                        end 

Since the adaptive filter coefficients are in the range , thus, time varying 

can be exploited. Note that the coefficients of the FIR filter stay fixed during the 

observation period for which the error function is defined [18].  

 
3.3 Affine Projection Algorithm (AFP) 

The affine projection algorithm is a multi-dimensional generalization of normalized least 

mean square (NLMS) adaptive filtering algorithm. Where, each tap FIR filter coefficients 

vector update of NLMS is viewed as a one dimensional affine projection [19]. Thus, AFP 

uses the projection order, so this algorithm is extension of NLMS. The AFP algorithm can 

be state in pseudocode form as following; 

            Parameters:  N=number of taps, µ = adaptation constant and  

              Initialization: set   , If the tap-weight vector is 

known  

                       Otherwise, set  

             Data:    Given x(n) = M ×1 tap-input vector at time step n 

                                    d(n) =  desired response at time step n. 

             Computation: 

for n = 1: N;  

y(n) = x
T
(n) h(n-1); % Filter output by matrix 

multiplication  

e(n) = d(n) – y(n); 

 ; 

                        end  
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The desired update equation of h(n) for the affine projection adaptive filter is uniquely 

determined by the data matrix x(n) and the error vector, e(n), by acting on the old weight 

vector, h(n-1), to produce the updated weight vector h(n). 

 

4. Wireless Channel Mathematical Model 

A wireless communication system is transmitting information through wireless channels. 

A mathematical model is constructed to reflect the most important characteristics of the 

transmission channel. This mathematical model is the prelude of the channel’s simulation 

using Matlab tool. 

4.1 Time-Invariant Channel 

The time invariant channel may represent transmission medium for a stationary receiver 

in one location, So that the impulse response, h(n), of this channel can be written as 

below: 

 
1 

 

Which can be expressed in closed form as; 

 

 

2 

 

Where, number of path,  path loss, phase and delay respectively. From 

above we note that the time parameter eliminated because the channel is not changing in 

time, moreover the channel have different delays and attenuations and phase shift the Fig. 

1 relates these parameter (attenuation, path delay and phase) in one diagram. 

 

 

 

 

 

 

 

Fig.1 General Impulse response of a time-invariant channel 

The channel output signal is the convolution formula plus the white Gaussian noise, w(n) 

; 

 

 

(  

(  

(  

   
Time,  
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4.2 Time-Variant Channel  

Physical channels that have multipath phenomena such as ionospheric channel, the 

transmitted signal could show the effect by time-variant linear filter with varying impulse 

response  [20] 

 

 

4 

 

Where, = channel impulse response,  = path loss, phase, delay 

respectively. 

The effect of time delay, attenuation and phase shift on the invariant channel, that have 

ten paths, are investigated. Assume that the receiver moving towards the transmitter in 

velocity at 300 km/second, moreover, constant angle of arrival is equal to zero to be the 

maximum Doppler shift: 

 

5 

 

Where,  Doppler frequency, V= velocity of receiver, C=speed of light and 

angle of arrival. The received signal can be written by the equation:  

 

 

6 
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Fig. 2 A linear time-variant channel [21]  

The input signal, for both models, is  

7 

 
 

8 
 

Take into account whole  transmitted and received signals  in real domain the reason that 

the modulators are designed to utilize the oscillators that produce a real sinusoidal (to 

complex exponentials), 

 
9 

 

5. Results and Discussions 

Computation complexity, mean square error and convergence time are the performance 

indices of these four adaptive algorithms (LMS, NLMS, RLS and AFP). The 

Computation Complexity describes the amount of arithmetic operations per iteration and 

the necessary number of iterations to achieve a desired performance level. The mean 

square error is the quadratic function of the error, e(n),  

 
10 

The third performance index is convergence rate which represents the number of 

iterations required for the algorithm to converge to its steady state mean square error.  

The results depend on the adaptation algorithm that has optimum computation 

complexity, less mean square error, and the fast convergence rate. The simulation result 

consists of tables and curves representing the performance characteristics of time-

invariant and time-variant channels. AFP has a projection order of (5) and (2) in time-

invariant and time- variant channel respectively. 

 

5.1 Time-Invariant Channel results 

The time invariant channel is mathematically modelled in equations (1), (2) and (3). This 

channel model can be identified using adaptive filtering architecture for wireless time- 

invariant channel as depicted in Fig. 3. The input signal samples are injected in the 

adaptive FIR model as well as in the unknown time-invariant channel. The unknown 

coefficients of the channel are adjusted to approach the FIR filter coefficients after a 

certain number of iterations.  
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Fig. 3 Adaptive filtering architecture for wireless time- invariant channel 

 

The impulse response of the channel with ten different paths is as shown in Fig. 4 below. 

Error 

Signal,  

e(n) Input Signal, x(n) 

Desired Signal, y(n) 
Unknown Time Invariant 

Channel 

 

FIR filter model 

∑ 

∑ 

Adaptive algorithm 

 Noise Signal, w(n) 

Output Signal, d(n) 

- 

+ 
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Fig. 4 The impulse response of a time invariant channel 

The performance indices are summarized in Table 1. An observation of the RSL 

algorithm outperforms the other adaptive algorithms in identifying the wireless time-

invariant channel.  

Table 1 Performance Comparison of wireless time –invariant channel 

identification architecture’s Adaptive Algorithms, where N (=10) is filter order 

using (100) iteration 

Adaptive 

Algorithm 

Computation  

complexity 

Mean 

Square 

Error 

LMS  2N+2 0.0214 

NLMS 3N+1 0.0169 

RLS 4N
2 0.0116 

AFP 2N
3
 0.0158 

 
The computational complexity of the four is further illustrated in the curve of  

Fig 5. 
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Fig. 5 Computation complexity curve plotted against the adaptive algorithms.  

Filter coefficients adapted to the channel coefficients with step-size = 0.04 for the LMS, 

and step-size = 1 for AFP and NLMS, and the RLS forgetting factor = 0.99 with the 

following mean square error of  Fig. 6. 

 

 

Fig. 6 learning curve of the four adaptive algorithms, iteration=100, filter 

order=10 

5.2 Time-Variant Channel Simulation 
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The adaptive identification architecture, depicted in Fig. 7, is emulating the 

mathematically model of the time-variant channel as in (4), (5) and (6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Wireless Time-variant channel identification architecture 

The input signal is sampled in the adaptive FIR model as well as in the unknown time-

invariant channel. Then, the unknown coefficients of the channel are adjusted to approach 

the FIR filter coefficients after a certain number of iterations. 

Table 2 Performance Comparison of wireless time –invariant channel 

identification architecture’s Adaptive Algorithms, where N (=10) is filter order 

using (100) iteration. 

 Adaptive 

Algorithm 

Computation  

complexity 

Mean Square Error 

LMS  2N+2 3.1481 

NLMS 3N+1 0.7979 

RLS 
 

0.0454 

AFP 
 

0.0433 

 

Error 

 Signal, 

 e(n) 
Input 

Signal, 

x(n) 

- 

Desired Signal, y(n) Unknown Time Variant Channel 

 

FIR filter model 

∑ 

∑ 

Adaptive algorithm 

 Noise Signal, w(n) 

Output Signal, d(n) 

+ 
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Filter coefficients adapted to the channel coefficients with step-size = 0.04 for the LMS, 

and step-size = 1 for AFP and NLMS, and the RLS forgetting factor = 0.99 with the 

following mean square error of Fig. 8. 

 

 

Fig. 8 learning curve for time varying channel filter order = 10, number of iteration =100. 

 

6. Conclusion 

This paper is presented a comparative performance evaluation of four adaptive blind 

identification methods of wireless channel. This investigation is efficiently developed 

through computer simulation of wireless channel mathematical model for the least square 

error and convergence rate for both time invariant and variant channels.  

Improving the current state of adaptive algorithmic aspect of wireless channel, to go 

upward the next-generation 5G channel model, a novel breakthrough emerging 

techniques are needed to be innovated. A golden ratio-inspired approach that structured 

over the emerging Union Dipole Theory [22] may be one of the potential future solutions. 
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