

Global Proceedings Repository American Research Foundation

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

The 1st International Conference on Sciences and Arts (ICMSA 2017)

المؤتمر الدولي الاول للعلوم والاداب

3 مايو 2017 - اربيل - العراق

http://sriweb.org/erbil/

Contra And Perfectly Contra T*- Intuitionistic Generalized - Irresolute Maps On Intuitionistic Topological Spaces

Asmaa Ghasoob Raoof

Dept of mathematic/ college of Education/ Tikrit university

Abstract. In this paper,I introduce a new class of maps(contra T*-intuitionistic generalized irresolute maps) in intuitionistic topological spaces, some of its properties and relations are studied .Through this concept I introduce a new class of maps(perfectly contra T*-intuitionistic generalized irresolute maps) in intuitionistic topological spaces .Also I introduce several kinds of perfectly contra T*-intuitionistic generalized irresolute map and Istudy some of their properties and relation among them .

Key words: Contra T*-intuitionistic generalized irresolute maps in intuitionistic topological spaces, perfectly contra T*-intuitionistic generalized irresolute maps in intuitionistic topological spaces.

I-Introduction

Dunham,W. [5] introduced generalized closure operator cl^{*} and defined a topology called T^{*} topology .Sakthive, K.[15] introduced and studied intuitionistic fuzzy Alpha generalized continuous maps and intuitionistic Alpha generalized irresolute maps. Pushpalatha, A. Eswaran, S. and Rajar,P.[10] studied and investigated T^{*}generalized – closed sets .Eswaran, S.and Pushpalatha, A.[6] introduced T^{*}generalized-continuous maps in topological spaces.Pushpalatha, A. and Eswaran, S. [11] defined two classes of maps called perfectly generalized-continuous maps and strongly T^{*}generalized-

Global Proceedings Repository American Research Foundation

يبكة المؤتمرات العربية

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

continuous maps respectively. Raouf, G. A. and Yaseen , Y. J. [12] studied contra and totally T*- intuitionistic generalized continuous maps and some kinds in intuitionistic in intuitionistic topological spaces . Miguel ,Caldas , C. [9] have defined perfectly contra irresolute maps and studied weak and strong forms of irresolute . In this paper I introduce two new classes of maps between intuitionistic topological spaces(ITS) namely contra T*-intuitionistic generalized- irresolute maps , perfectly contra T*-intuitionistic generalized- irresolute maps , perfectly contra T*-intuitionistic generalized- irresolute maps , perfectly contra T*-intuitionistic generalized- irresolute maps in intuitionistic topological spaces and some kinds in intuitionistic topological spaces and study their properties .Throughout this paper (X,T*) and (Y,T*) (or simply X and Y)represent non- empty intuitionistic topological spaces (ITS) on which no separation axioms are assumed ,unless otherwise mentioned. Let A be an IS in (X, T*), I denote the closure of A (respectively the generalized closure operator is defined by the intersection of all Ig-closed contining A ,and A^c represent closure of A and complement of A to an intuitionistic topological spaces (ITS) on T*by cl (A)(respectively cl^{*} (A)).

<u>II- Preliminaries</u>

I recall the following definitions which are needed in our work .

Let X be a non-empty set, and let A and B be IS having the form $A = \langle x, A_1, A_2 \rangle$;

 $B = \langle x, B_1, B_2 \rangle$ respectively. Furthermore, let $\{A_i : i \in I\}$ be an arbitrary family of IS in X, where $A_i = \langle x, A_i^{(1)}, A_i^{(2)} \rangle$, then:

- 1) $\widetilde{\emptyset} = \langle \mathbf{x}, \emptyset, \mathbf{X} \rangle$; $\widetilde{\mathbf{X}} = \langle \mathbf{x}, \mathbf{X}, \emptyset \rangle$.
- 2) $A \subseteq B$, iff $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$.
- 3) The complement of A is denoted by \overline{A} and defined by $\overline{A} = \langle x, A_2, A_1 \rangle$.
- 4) $\cup A_i = \langle x, \cup A_i^{(1)}, \cap A_i^{(2)} \rangle, \cap A_i = \langle x, \cap A_i^{(1)}, \cup A_i^{(2)} \rangle$ [3]. Let X and Y be two non-empty sets and f: X \rightarrow Y be a function. If B = $\langle y, B_1, B_2 \rangle$ is IS in Y, then the preimage of B under f denoted by $f^{-1}(B)$ is IS in X defined by $f^{-1}(B) = \langle x, f^{-1}(B_1), f^{-1}(B_2) \rangle$ [3]. An intuitionistic topology (IT, for short) on a non-empty set X, is a family T of IS in X containing $\tilde{\emptyset}, \tilde{X}$ and closed under arbitrary unions and finitely intersections. The pair (X, T) is called an intuitionistic topological space (ITS, for short) [3]. Let (X, T) be ITS and A be as ubset of X, then the interior and closure of A are defined by int (A)= \cup {Gi: Gi \in T, Gi \subseteq A}, cl(A)= \cap {K_i: K_i is ICS in X and A \subseteq K_i } [13] . A subset A of intuitionistic topological spaces(ITS, for short)(X, T) is said to be generalized closed(Igclosed)in X if $Icl(A) \subseteq UwheneverA \subseteq U$ and U is Iopen in X.Asubset A is called generalized open(Ig-open) in X if its complement \overline{A} is Ig-closed every Iclosed set is Igclosed [7]. Let (X,T) and (Y, τ) be two ITS and Let f: X \rightarrow Y be afunction, then f is said to be continuous if f⁻¹(V) is I-closed (or I-open) in X for every y I-closed set (or I-open set) V in Y[3]. Let (X,T) and (Y, τ) be two ITS and Let f: X \rightarrow Y be afunction, then f is said to be irresolute if $f^{-1}(V)$ is Isemi-closed set in X for every Isemi-closed set V in Y [9]. Let (X,T) and (Y,τ) be two ITS and Let $f: X \to Y$ be a function, then f is said to be semiirresolute (resp. pre- irresolute , semipre- irresolute and presemi- irresolute) if $f^{-1}(V)$ is Isemi-closed (resp. Ipre-closed, Isemipre-closed and Ipresemi-closed)set in X for every Isemi-closed (resp. Ipre-closed, Isemipre-closed and Ipresemi-closed set V in Y [9]. A subset A of ITS (X, T) is said to be:- 1) gs-closed (resp. psg - closed, gsp - closed, if $Iscl(A) \subseteq U(resp. Ipscl(A) \subseteq U and Ispcl \subseteq U)$ whenever $A \subseteq U$ and U is I open set 2) sg - closed(resp.gps - closed) if I scl(A) \subseteq U (resp. Ipsc(A) \subseteq U in X. whenever U is Isemi-open (resp. I presemi-open) set in X [7]. A subset A of ITS (X, T) is said to be :-

Global Proceedings Repository American Research Foundation

Available online at http:// proceedings.sriweb.org

http://arab.kmshare.net/

a) An intuitionistic presemi-closed (Ips-closed) if $I cl(I int(I cl(A))) \subseteq A$.

b) An intuitionistic pre-closed (Ip-closed) if $I cl(I int(A)) \subseteq A$.

c) An intuitionistic semi-closed (Isemi-closed) if $I int(I cl(A)) \subseteq A$.

d) An intuitionistic semipre-closed(Isp-closed) if $I int(I cl(I int(A))) \subseteq A[1]$. For the subset A of ITS (X, T), the intuitionistic generalized closure operator I cl* is defined by the intersection of all I g-closed sets containing A[5]. For the subset A of ITS (X,T), the Isemi-closure (resp.I semipre-closure ,I presemi-closure) of A is defined as the intersection of all I semi-closed set(resp. I semipre-closed set, I presemi-closed set containing A[5]. A map $f: (X, T) \rightarrow (Y, \tau)$ is called generalized - irresolute (Ig- irresolute) (resp. generalized semi- irresolute, semi generalized- irresolute, generalized presemiirresolute, presemi generalized- irresolute and generalized semipre- irresolute)(resp. Igs irresolute, Isg- irresolute, Igps- irresolute, Ipsg- irresolute and Igsp- irresolute) if f⁻¹(V)is Ig- closed(resp. Igs-closed,Isg-closed, Igps-closed,Ipsg-closed and Igsp-closed)set in X for every Ig- closed(resp. Igs-closed, Isg-closed, Igps-closed, Ipsg-closed and Igspclosed)set V set in Y[9]. A map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y, τ) is called contra-continuous if $f^{-1}(V)$ is Iclosed set in X for each Iopen V set in Y[5]. A map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y,τ) is called contra irresolute if $f^{-1}(V)$ is Isemi-closed set in X for each Isemi – open V set in Y[9]. A map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y, τ) is called contra semipre-irresolute (resp. contra pre- irresolute and contra presemiirresolute) (contra Isp- irresolute (resp. contra Ip- irresolute and contra Ips- irresolute) function if f⁻¹(V)is Isp-closed(resp. Ip-closed and Ips-closed) set in X for each Ispopen(resp.Ip-open and Ips-open) V set in Y[2]. A map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y, τ) is called contra generalized-irresolute (resp. contra gs- irresolute, contra sg- irresolute, contra psgirresolute ,contra gps- irresolute and contra gsp- irresolute) function if $f^{-1}(V)$ is Ig-closed (resp. Igs-closed, Isg-closed, Ipsg-closed, Igps-closed and Igsp-closed) set in X for each Ig-open (resp. Igs-open, Isg-open, Ipsg-open, Igps-open and Igsp-open) set V in Y [2]. A subset A of ITS (X,T), the topology T^* is defined by $T^* = \{U: Icl^*(\overline{U}) = (\overline{U})\}[10]$. A subset A of ITS (X, T) is called T*-generalized-closed sets(T*-Ig-closed) if Icl*(A) \subseteq U whenever $A \subseteq U$ and U is T*-I-open in X.The complement of T*-Igeneralized-closed set T*-I is called the generalized-open set (T*-Ig-open) [10]. A collection $\{A_i : i \in I\}$ of Ig-open sets in a topological space (X, T) is called a Ig-open cover of a subset B if $B \subset U \{A_i : i \in I\}[10]$. A map $f: (X, T) \to (Y, \tau)$ is called T^{*}generalized-irresolute function if f⁻¹(V) is T*-Ig-closed set in X for every T*-Ig-closed set V in Y[10].

A map $f: (X, T) \to (Y, \tau)$ is said to be contra generalized-continuous (contra Igcontinuous) if $f^{-1}(V)$ is Ig-closed set in X for every I-open set V in Y[2]. A map $f: (X, T) \to (Y, \tau)$ is said to be perfectly generalized-continuous (perfectly Ig-continuous) if $f^{-1}(V)$ is both lopen and I-closed set in X for every Ig-closed set V in Y[11]. A map $f: (X, T) \to (Y, \tau)$ is called T*-generalized continuous (T*-Ig-continuous) if $f^{-1}(V)$ is T*-Ig-closed set in X for every Ig-closed set in X for every Ig-closed set in X for every Ig-closed set in Y [11]. A map $f: (X, T) \to (Y, \tau)$ is called called strongly T*- generalized-continuous (T*-Ig-continuous) if $f^{-1}(V)$ is Ig-open (or

Global Proceedings Repository

ISSN 2476-017X

شَبّكةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

Ig-closed) set in X of every T*-Ig-open set (or T*-Ig-closed set) in Y[11]. A map f: $(X, T) \rightarrow (Y, \tau)$ is called contra T* generalized-continuous(contra T*-Ig-continuous) if the inverse image of every Ig-open set in Y is T*-Ig-closed set in X[12]. A map f: $(X, T) \rightarrow (Y, \tau)$ is called perfectly T* generalized-continuous(perfectly T*-Igcontinuous) if f⁻¹(V) is both Ig-open and Ig-closed set in X for every is T*-Ig-closed set V in Y [11]. A map f: $(X, T) \rightarrow (Y, \tau)$ is called totally T* generalized-continuous(totally T*-Igcontinuous) if f⁻¹(V) is T*-Ig-clopen set in X for every Ig-open set V in Y [12]. A

map f: (X, T) \rightarrow (Y, τ) is called perfectly irresolute if f⁻¹(V) is both Isemi-open and Isemi-closed set in X for every is Isemi-closed set V in Y [9]. A map f: $(X, T) \rightarrow (Y, \tau)$ is called perfectly contra-irresolute if $f^{-1}(V)$ is both Isemi- open and Isemi-closed set in X for every is Isemi-open set Vin Y [2]. map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y,τ) is called perfectly contra semipre-irresolute (resp. perfectly contra semi- irresolute and contra pre- irresolute) (contra Isp- irresolute (resp. contra Is- irresolute and contra Ip -irresolute) function if $f^{-1}(V)$ is both Isp-open and Isp-closed(resp.Is-open and Is-closed and Ip-open and Ipclosed)set in X for every Isp-open(resp.Is-open and Ip-open)set V in Y [2]. A map $f: (X, T) \rightarrow (Y, \tau)$ is called perfectly generalized-irresolute if $f^{-1}(V)$ is both Ig- open and Ig-closed set in X for every is Ig-closed set V in Y [2]. A map $f: X \to Y$ from an intuitionistic topological space (X,T) in to an intuitionistic topological space (Y,τ) is called contra-continuous if $f^{-1}(V)$ is Iclosed set in X for each Iopen V set in Y [4]. **Remark 2.1** [10] It has been proved that : Every Iclosed set (Ig-closed and T^{*}-Iclosed) set is T^* -Ig-closed. The complement of T^* -Ig-closed set is T^* -Ig-open set.

III- Contra T*- intuitionistic generalized irresolute maps in Intuitionistic topological spaces

I define, in this section anew kinds of X maps called T^* -intuitionistic irresolute maps, T^* -intuitionistic generalized irresolute maps, contra T^* -intuitionistic irresolute and contra T^* -intuitionistic generalized irresolute maps an intuitionistic topological spaces and related to other kind of maps which are defined in this work.

I start this section by the following definitions.

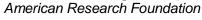
<u>Definition 3.1</u> A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called T^* - intuitionistic irresolute if the inverse image of every T^* - Iclosed set in Y is T^* -Iclosed set in X.

<u>Definition 3.2</u> A map $f: (X, T) \to (Y, \tau)$, where (X, T) and (Y, τ) are ITS is called contra T^* - intuitionistic irresolute if the inverse image of every T^* - lopen set in Y is T^* - lclosed set in X.

<u>Definition 3.3</u> A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called T^* -intuitionistic generalized-irresolute (T^* -Ig-irresolute) if the inverse image of every T^* -Ig-closed set in Y is T^* -Ig-closed set in X.

Next Iam going to generalize the definition of contra T*- Ig- *irreolute for ITS.*

Global Proceedings Repository



شَبّكةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

<u>Definition 3.4</u> A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called contra T^* -intuitionistic generalized-irresolute (contra T^* -Ig-irresolute)if the inverse image of every T^* -Ig-open set in Y is T^* -Ig-closed set in X.

The following characterization can be proved in the following proposition.

<u>Proposition 3.5</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is contra T^* - Ig- irresolute if and only if the inverse image of every T^* Ig-closed set in Y is T^* - Ig-open set in X.

Proof Assume that f is contra T^* -Ig-irresolute. Let B be any T^* Ig-closed set in Y, then B^c is T^* Ig-open set in Y. Since f is contra T^* -Ig-irresolute, $f^{-1}(B^c)$ is T^* -Ig-closed set in X. But $f^{-1}(B^c) = (f^{-1}(B))^c$ and so $f^{-1}(B)$ is T^* -Ig-open set in X. Hence the inverse image of every T^* -Ig-closed set in Y is T^* -Ig-open set in X. Assume that the inverse image of every is T^* -Ig-closed set in Y is T^* -Ig-open set in X. Let B be any T^* -Ig-open set in Y, then B^c is T^* -Ig-closed set in Y. By assumption, $f^{-1}(B^c)$ is T^* -Ig-open set in X. But $f^{-1}(B^c) = (f^{-1}(B))^c$ and so $f^{-1}(B)$ is T^* -Ig-closed set in X. Therefore f is contra T^* -Ig-irresolute.

The following proposition illustrates the relation between strongly T^* -Ig-continuous and contra T^* -Ig-irresolute.

<u>Proposition 3.6</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is strongly T^* - Ig- continuous then it is contra T^* -Ig-irresolute.

<u>Proof</u> Let $f: X \to Y$ be strongly T^* - Ig- continuous. Let A be a T^* - Ig-open set in Y. Since f is strongly T^* - Ig- continuous, then $f^{-1}(A)$ is Ig-closed set in X. By remark 2.1, $f^{-1}(A)$ is T^* -Ig-closed set in X. Hence f is contra T^* -Ig-irresolute.

The converse of the a bove proposition need not be true as the following example shows. <u>**Example 3.7**</u> Let $X=\{1,2,3\}$; $T=\{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where $A = < x, \{2\}, \{1,3\} > and B = < x, \{2\}, \emptyset, >$ Let $Y=\{a,b,c\}$; $\Psi = \{\widetilde{\emptyset}, \widetilde{Y}, C\}$ where $C = < y, \{a\}, \emptyset >$

. Define a mapping $f: X \to Y$ by f(2)=a, f(3)=b and f(1)=c. I can see that f is T^* -Igirresolute, Since C is is T^* -Ig-open set in Y, then $B = f^{-1}(C) = \langle x, \{2\}, \emptyset \rangle T^*$ -Igclosed set in X. Becouse the only T^* in X that contain B is B and $Q_4 = \langle x, \{2,3\}, \emptyset \rangle$, then I cl^{*} $B=B \subseteq B$ and Q_4 . But f is not strongly T^* - Ig- continuous, becouse $B = f^{-1}(C)$ is not Ig-closed set in X, since the only IOS in X such that $B \subseteq B$ then IclB $=X \subseteq B$.

In the following result I prove that contra T^* -irresolute. gives contra T^* -Ig-irresolute. **<u>Proposition 3.8</u>** Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is contra T^* -I irresolute then it is contra T^* -Ig-irresolute.

<u>Proof</u> Let $f: X \to Y$ be contra T^* - irresolute. Let B be any T^* - lopen set in Y. Since f is contra T^* - irresolute, then $f^{-1}(B)$ is T^* -lclosed set in X. By remark 2.1, $f^{-1}(B)$ is T^* -lg-closed set in X Hence f is contra T^* -lg-irresolute.

The converse of the a bove proposition need not be true as the following example shows.

Global Proceedings Repository

ISSN 2476-017X

نَسَبَكَةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

Example 3.9 Let $X=\{a,b,c\}$; $T=\{\tilde{\emptyset}, \tilde{X}, A, B, C\}$ where $A = \langle x, \{c\}, \{a,b\} \rangle, B = \langle x, \{a\} \{b,c\} \rangle$ and $c = \langle x, \{a,c\}, \{b\} \rangle$.Let $Y=\{1,2,3\}$; $\Psi = \{\tilde{\emptyset}, \tilde{Y}, D\}$ where $D = \langle y, \{1\}, \emptyset \rangle$. Define a mapping $f: X \to Y$ by f(a)=1 and f(b) = f(c) = 2. It is easy to see that f is contra T^* -Ig-irresolute, Since $E = \langle y, \{3\}, \{1\} \rangle$ is T^* -Iopen set in Y, then $f^{-1}(E) = \langle x, \emptyset, \{a\} \rangle \notin T^*$ -Iclosed set in X, so f is not contra T^* -irresolute but f is contra T^* -Ig-irresolute E is is T^* -Ig-open set in Y and $f^{-1}(E)$ is T^* -Ig-closed set in X, becouse the only T^* in X that contain $Z_1 = \langle x, \{c\}, \{a\} \rangle, Z_2 = \langle x, \{a, c\}, \emptyset \rangle$ and $Z_3 = \langle x, \{c\}, \emptyset \rangle$ then $I \, cl^* f^{-1}(E) = f^{-1}(E) \subseteq Z_1, Z_2$ and Z_3 .

The following proposition proved that the composition of contra T^* -Ig-continuous and contra T^* -Ig-irresolute is also contra T^* -Ig-continuous.

<u>Proposition 3.</u>10 If a mapping $f: X \to Y$ is contra T^* -Ig-continuous and a mapping $g: Y \to Z$ is contra T^* -Ig-irresolute then the composition $g \circ f: X \to Z$ is contra T^* -Ig-continuous.

Proof Let A be any Ig-open set in Z. Since g is contra T^* -Ig-continuous, $g^{-1}(A)$ is T^* -Ig-closed set in Y. Since f is contra T^* -Ig-irresolute, $f^{-1}(g^{-1}(A))$ is T^* _Ig-closed set in X. By remark 2.1, So $f^{-1}(g^{-1}(A))$ is T^* -Ig-closed set. But $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$. Therefore $g \circ f$ is contra T^* -Ig-continuous.

The following proposition puts a necessary condition on perfectly Ig-continuous to be contra T^* -Ig-irresolute.

<u>Proposition 3.11</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly Ig-continuous then it is contra T^* -Ig-irresolute.

<u>Proof</u> Let $f: X \to Y$ be perfectly Ig-continuous. Let A be a Ig-open set in Y. Since f is perfectly Ig-continuous, then $f^{-1}(A)$ is both Iopen and Iclosed set in X. By remark 2.1, A is T^* -Ig-open and since every Iclosed set is T^* -Ig-closed set, $f^{-1}(A)$ is T^* -Ig-closed set. Hence f is contra T^* -Ig-irresolute.

The converse of the a bove proposition need not be true as the following example shows. **Example 3.12** Let $X = \{1,2,3\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B\}$ where $A = \langle x, \{3\}, \{1,2\} \rangle A = \langle x, \{2\}, \{1,3\} \rangle$ and $B = \langle x, \{3\}, \emptyset \rangle$. Let $Y = \{a, b, c\}, \Psi = \{\tilde{\emptyset}, \tilde{X}, C\}$ where

 $C=\{y,\{b\}, \emptyset > Define a mapping f: X \to Y by f(3) = b, f(2) = a and f(1) = c$. It is easy to see that f is contra T*-Ig-irresolute. Since $\beta_1 = \langle y, \{b\}, \{a\} > is T^*$ -Ig open set in Y, then $\partial_2 = f^{-1}(\beta_1) = \langle x, \{3\}, \{2\} >$

 T^*Ig – closed set in X, becouse the only T^* that contain ∂_2 is B, ∂_2 , $\partial_3 = \langle x, \{1,3\}, \emptyset \rangle$ and $\partial_5 = \langle x, \{2,3\}, \emptyset \rangle$ then I cl^{*} $\partial_2 = \partial_2 \subseteq B$, ∂_2 , ∂_3 and ∂_5 , but f is not perfectly Ig – continuous. Since β_1 is Ig –

open set in Y, but $\partial_2 = f^{-1}(\beta_1)$ is not Iopen and Iclosed set in X.

<u>Remark 3.13</u> The following example shows that contra T*-Ig-irresolute map in ITS is independent from contra(Isp-irresolute, Isg-irresolute, Ips-irresolute, Ipre-irresolute, Igsp-irresolute, Igsp-irresolute Ipsg-irresolute and Igps-irresolute)maps. I start with example showing that:

1) contra T^{*}-Ig-irresolute, but not contra Isp-irresolute.

2) contra T*-Ig-irresolute, but not contra Ipre-iresolute.

Global Proceedings Repository

ISSN 2476-017X

Available online at http:// proceedings.sriweb.org

ثَبَكَةُ المُؤْتَمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Example 3.14 Let X={*a,b,c*}; $T = \{ \tilde{\emptyset}, \tilde{X}, A \}$ where $A = \langle x, \{a\}, \{b, c\} \rangle$, Let $Y = \{1, 2, 3\}; \Psi = \{1, 2, 3\}$ $\{\tilde{\emptyset}, \tilde{Y}, C, D\}$ where $C = \langle y, \{1\}, \{2\} \rangle$ and $D = \langle y, \{1,3\}, \emptyset \rangle$. Define a mapping $f: X \to Y$ by f(a)=1, f(b)=f(c)=3 $ISPOX=IPOX=T \cup \{B, E, F, R, H, I, J, K, L, M, N, P, Q, S, V\}$ where B = $\langle x, \{a\}, \emptyset \rangle$; $E = \langle x, \{a, c\}, \emptyset \rangle$; $F = \langle x, \{a, c\}, \{b\} \rangle$; R = $\langle x, \{a, b\}, \emptyset \rangle$; $H = \langle x, \{b\}, \emptyset \rangle$; $I = \langle x, \{c\}, \emptyset \rangle$; $J = \langle x, \emptyset, \{b, c\} \rangle$; K = $\langle x, \phi, \{b\} \rangle$; $L = \langle x, \{b\}, \{c\} \rangle$; $M = \langle x, \phi, \{c\} \rangle$; $N = \langle x, \{c\}, \{b\} \rangle$; P = $\langle x, \{b, c\}, \phi \rangle; Q = \langle x, \{a, b\}, \{c\} \rangle; S = \langle x, \{a\}, \{b\} \rangle and V = \langle x, \{a\}, \{c\} \rangle.$ ISPOY=IPOY= $\Psi \cup \{Q_i\}_{i=1}^{17}$ where $Q_1 = \langle y, \{1\}, \emptyset \rangle; Q_2 =$ $\langle y, \{1\}, \{3\} \rangle; Q_3 = \langle y\{1\}, \{2,3\} \rangle; Q_4 = \langle y, \{1,3\}, \{2\} \rangle; Q_5 =$ $\langle y, \{2,3\}, \phi \rangle; Q_6 = \langle y, \{2,3\}, \{1\} \rangle; Q_7 = \langle y, \{2\}, \phi \rangle; Q_8 =$ $\langle y, \{2\}, \{3\} \rangle; Q_9 = \langle y, \{1,2\}, \emptyset \rangle; Q_{10} = \langle y, \{1,2\}, \{3\} \rangle; Q_{11} = \langle y, \{1,2\}, \{3\} \rangle; Q_{11} = \langle y, \{1,2\}, \{3\} \rangle$ $(y, \{3\}, \emptyset); Q_{12} = (y, \{3\}, \{1\}); Q_{13} = (y, \{3\}, \{2\}); Q_{14} =$ $\langle y, \{3\}, \{1,2\}\rangle, Q_{15} = \langle y, \emptyset, \{2\}\rangle; Q_{16} = \langle y, \emptyset, \{3\}\rangle and Q_{17} =$ $(y, \emptyset, \{2,3\})$, from all above and definition of contra T^{*}-Ig-irresolute function that f is contra T^* -Ig-irresolute. Since C is T^* -Ig-open set in Y, then $B=f^{-1}(C) = \langle x, \{a\}, \emptyset \rangle$ is T^* -Ig-closed set in X, the only T^* in X that contain B is B, then $I cl^* B = B \subseteq B$. But f is not contra Isp-irresolute and not *Ipre-irresolute.Since ISPOX and IPOX in X,then Int Icl I int* $B = X \subsetneq B$ *and Icl lint* $B = X \subsetneq B$.

I show in this example that there is a functions *f* such that : 1) *f* is contra Igs-irresolute and not contra T*-Ig-irresolute. 2) *f* is contra Isp-irresolute and not contra T*-Ig-irresolute. 3) *f* is contra Isp-irresolute and not contra T*-Ig-irresolute. **Example 3.15** Let X={*a*,*b*,*c*}; T={ $\tilde{\emptyset}$, \tilde{X} , A, B, C} where A = < *x*, {*c*}, {*a*, *b*} >, B = < x, {*a*}, {*b*, *c*} >, *C* = < *x*, {*a*, *c*}, {*b*} > . Let Y={1,2,3}; $\Psi = \{\tilde{\emptyset}, \tilde{Y}, D, E, F\}$ where D = < y, {1,3}, {2} >, E = < *y*, {2}, {3} > and F = < y, \emptyset , {2,3} >. Define a mapping *f*: $X \to Y by$ *f*(*c*)=2, *f*(*a*)=*f*(*b*)=3. ISPOX= $T \cup \{Z_i\}_{i=1}^{19}$ where $Z_1 = \langle x, \{c\}, \{a\}\rangle; Z_2 =$ $\langle x, \{a, c\}, \emptyset\rangle; Z_3 = \langle x, \{c\}, \{b\}\rangle; Z_4 = \langle x, \{a\}, \{c\}\rangle; Z_5 =$ $\langle x, \{a, b\}, \{c\}\rangle; Z_6 = \langle x, \{c\}, \emptyset\rangle; Z_7 = \langle x, \{b, c\}, \{a\}\rangle; Z_8 =$ $\langle x, \{a, b\}, \emptyset\rangle; Z_{12} = \langle x, \{b\}, \emptyset\rangle; Z_{13} = \langle x, \{b\}, \{a\}\rangle; Z_{14} =$ $\langle x, \{a, b\}, \emptyset\rangle; Z_{15} = \langle x, \emptyset, \{a\}\rangle; Z_{16} = \langle x, \emptyset, \{b\}\rangle; Z_{17} = \langle x, \emptyset, \{c\}\rangle; Z_{18} =$ $\langle x, \emptyset, \{a, b\}\rangle$ and $Z_{19} = \langle x, \emptyset, \{b, c\}\rangle$. ISPOY= $\Psi \cup \{\beta_i\}_{i=1}^{21}$ where $\beta_1 =$ $\langle y, \{1,3\}, \emptyset\rangle; \beta_2 = \langle y, \{2\}, \emptyset\rangle; \beta_3 = \langle y, \{2\}, \{1\}\rangle; \beta_4 =$ Global Proceedings Repository

American Research Foundation

ISSN 2476-017X

Available online at http:// proceedings.sriweb.org

 $\langle y, \{2\}, \{1,3\} \rangle; \beta_5 = \langle y, \{2,3\}, \emptyset \rangle; \beta_6 = \langle y, \{2,3\}, \{1\} \rangle; \beta_7 =$ $\langle y, \{1,2\}, \emptyset \rangle; \beta_8 = \langle y, \{1,2\}, \{3\} \rangle; \beta_9 = \langle y, \emptyset, \{1\} \rangle; \beta_{10} =$ $\langle y, \emptyset, \{2\} \rangle; \beta_{11} = \langle y, \emptyset, \{3\} \rangle; \ \beta_{12} = \langle y, \emptyset, \{1,2\} \rangle; \ \beta_{13} =$ $\langle y, \emptyset, \{1,3\} \rangle; \ \beta_{14} = \langle y, \{1\}, \emptyset \rangle, \beta_{15} = \langle y, \{1\}, \{2\} \rangle; \ \beta_{16} =$ $\langle y, \{1\}, \{3\} \rangle; \ \beta_{17} = \langle y, \{1\}, \{2,3\} \rangle, \beta_{18} = \langle y, \{3\}, \emptyset \rangle; \ \beta_{19} =$ $\langle y, \{3\}, \{1\} \rangle$; $\beta_{20} = \langle y, \{3\}, \{2\} \rangle$ and $\beta_{21} = \langle y, \{3\}, \{1,2\} \rangle$. It is easily to satisfy that f is contra Igs-irresolute(resp. contra Isp-irresolute and contra Igsp-irresolute . But not contra T^* -Ig-irresolute, since E is $T^* - Ig - open set in Y, then A = f^{-1}(E) = \langle x, \{c\}, \{a, b\} \rangle that$ contain C, Z_1, Z_2 and $Icl^*A = < x\{c\}, \{a\} > is not contained on A or C.$

Example 3.16 Recall example 3.12 I can get the following: 1) f is contra T*-Ig- irresolute, but not contra Isg-irresolute. 2) f is contra T*-Ig- irresolute, but not contra Igs-irresolute. 3) f is contra T*-Ig- irresolute, but not contra Ipsg-irresolute. 4) f is contra T^{*}-Ig- irresolute, but not contra Igps-irresolute. 5) f is contra T*-Ig- irresolute, but not contra Igsp-irresolute. 6) f is contra T^* -Ig- irresolute, but not contra Ips-irresolute. $ISOX=IPSOX=T\cup\{\partial_1,\partial_2,\partial_3,\partial_4,\partial_5,\partial_6\}$ where $\partial_1 = \langle x, \{3\}, \{1\}\rangle; \partial_2 =$ $\langle x, \{3\}, \{2\} \rangle, \partial_3 = \langle x, \{1,3\}, \emptyset \rangle; \ \partial_4 = \langle x, \{1,3\}, \{2\} \rangle; \partial_5 =$ $\langle x, \{2,3\}, \emptyset \rangle$ and $\partial_6 =$ $\langle x, \{2,3\}, \{1\}\rangle$. ISOY=IPSOY= $\{\Psi \cup \beta_1, \beta_2, \beta_3\}$ where $\beta_1 =$ $B = f^{-1}(C) = \langle x, \{3\}, \emptyset \rangle$ is open set in Y,then $T^* - Ig$ closed set in X. So f is contra T^* -Ig-irresolute , but not contra Isgirresolute contra Igs-irresolute contra Igsp- irresolute and contra Ipsirresolute.Since C is Isg-open, Igs-open, Igsp-open, Ipsg-open, Igps-open and Ips-open set in Y, then $B=f^{-1}(C)$ is not Isg-closed, not Igs-closed not Igsp-closed, not Ipsg-closed, not Igps-closed and not Ips-closed set in X.

In the next example I show that:

1) contra Ips-irresloute function, but not contra T^* -Ig-irresolute function.

2) contra Ipre-irresolute function, but not contra T^* -Ig-irresolute function.

<u>Example 3.17</u> Let $X = \{a, b, c\}; T = \{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where $A = \langle x, \{c\}, \{b\} \rangle$ and $B = \langle x, \{a, c\}, \emptyset, \rangle$ Let $Y = \{1, 2, 3\}; \Psi = \{\tilde{\emptyset}, \tilde{Y}, C, D, E\}$ where $C = \langle v, v \rangle$

http://arab.kmshare.net/

Global Proceedings Repository

American Research Foundation

ISSN 2476-017X

Available online at http:// proceedings.sriweb.org

ثَبَبكَةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

 $y, \{1,3\}, \{2\} > D = \langle y, \{2\}, \{3\} > and E = \langle y, \emptyset, \{2,3\} >$. Define a mapping $f: X \to Y$ by f(c)=3 and f(b)=f(a)=1. *IPSOX*= $T \cup \{Q_1, Q_2, Q_3\}$ where $Q_1 = \langle x, \{c\}, \emptyset \rangle$; $Q_2 =$ $\langle x, \{a, c\}, \{b\} \rangle; Q_3 = \langle x, \{b, c\}, \emptyset \rangle$. IPOX= $T \cup \{Q_i\}_{i=4}^{17}$ where $Q_4 =$ $\langle x, \{c\}, \{a\} \rangle; Q_5 = \langle x, \{c\}, \{a, b\} \rangle; Q_6 = \langle x, \{a\}, \emptyset \rangle; Q_7 =$ $\langle x, \{a\}, \{b\} \rangle; \ Q_8 = \langle x, \{a\}, \{c\} \rangle; \ Q_9 = \langle x, \{a\}, \{b, c\} \rangle; \ Q_{10} =$ $\langle x, \{a, b\}, \emptyset \rangle; Q_{11} = \langle x, \{a, b\}, \{c\} \rangle; Q_{12} = \langle x, \{b\}, \emptyset \rangle; Q_{13} =$ $\langle x, \emptyset, \{a, b\} \rangle$ and $Q_{17} = \langle x, \{b, c\}, \{a\} \rangle$. $IPOY = \Psi \cup \{K_i\}_{i=1}^9 \text{ where } K_1 = \langle y, \{1,3\}, \emptyset \rangle; K_2 =$ $\langle y, \{2\}, \{1,3\} \rangle; K_3 = \langle y, \{1,2\}, \emptyset \rangle; K_4 = \langle y, \{1,2\}, \{3\} \rangle; K_5 =$ $\langle y, \{1\}, \emptyset \rangle$; $K_6 = \langle y, \{1\}, \{2\} \rangle$; $K_7 = \langle y, \{1\}, \{3\} \rangle$; $K_8 =$ $\langle y, \{1\}, \{2,3\}\rangle$ and $K_9 = \langle y, \emptyset, \{3\}\rangle$. IPSOY = $\{\tilde{\emptyset}, \tilde{Y}, C, D, E, K_1\}$. It is very easy to see that f is contra Ips-irresolute and contra Ipreirresolute .But not contra T^* -Ig-irresolute, because D is T^* -Ig-open set in Y, then $f^{-1}(D) = \langle x, \emptyset, \{c\} \rangle$ that contain B, and Icl^* $f^{-1}(D) = \langle x, \{b\}, \{c\} \rangle \subseteq B$.

Next I show that:

1) f is contra Ipsg-irresolute, but not contra T^* -Ig-irresolute. 2) f is contra Igps-irresolute, but not contra T^* -Ig-irresolute. 3) f is contra Isg-irresolute, but not contra T^* -Ig-irresolute. **Example 3.18** Let $X = \{a, b, c\}$; $T = \{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where A = < $x, \{c\}, \{b\} > and B = \langle x, \{a, c\}, \emptyset \rangle$. Let $Y = \{1, 2, 3\}; \Psi =$ $\{\phi, \tilde{Y}, C, D\}$ where $C = \langle y, \{1,3\}, \phi \rangle$ and $D = \langle y, \{1\}, \{3\} \rangle$. Define a mapping $f: X \to Y$ by f(a)=f(b)=1 and f(c)=2. $ISOX=IPSOX=T \cup \{Z_1, Z_2, Z_3\}$ where $Z_1 = \langle x, \{c\}, \emptyset \rangle$, $Z_2 = \langle x, \{a, c\}, \{b\} \rangle$ and $Z_2 = \langle$ $x, \{b, c\}, \emptyset > . IPSOY = ISOY = \Psi \cup \{P_1, P_2, P_3\}$ where $P_1 =$ $\langle y, \{1,2\}, \phi \rangle$; $P_2 = \langle y, \{1,2\}, \{3\} \rangle$ and $P_3 = \langle y, \{1\}, \phi \rangle$. Since $P_4 =$ $\langle y, \emptyset, \{2,3\} \rangle$ is T^* – Ig-open set in Y, then $\overline{Z}_1 = f^{-1}(P_4) =$ $\langle x, \emptyset, \{c\} \rangle \notin T^*$ – Ig-closed set in X, because the only T^* in X that contain B is B, then $I cl^* \overline{Z}_1 = \langle x, \{b\}, \{c\} \rangle \subseteq B.So f$ is not contra T^* -Ig-irresolute, but f is contra Ipsg-irresolute, contra Igps-irresolute and contra Isg-irresolute, since P₄ is Ipsg-open, Igps-open and Isg-open set in Y and $f^{-1}(P_4)$ is Ipsg-closed, Igps-closed and Ipsgclosed in X.

Global Proceedings Repository American Research Foundation

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

The following result I prove that contra Ig-continuous gives contra T^* -Ig-irresolute.

Proposition 3.19 Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is contra Ig-continuous then it is contra T^* -Ig-irresolute. **Proof** Let $f: X \to Y$ be contra Ig-continuous. Let A be a I-open set in Y, then $f^{-1}(A)$ is Ig-closed set in X. Since every Iopen set is T^* -Ig-open set , A is T^* -Ig-open set in Y. By remark 2.1, $f^{-1}(A)$ is T^* -Ig-closed set. Therefore f is contra T^* -Ig-irresolute.

However the converse is not true as shown by the following example. <u>Example 3.20</u> Recall example 3.12 show that f is contra T^* -Ig-irresolute, but not contra Ig-continuous. Since C is Iopen in Y, then $B=f^{-1}(C)$ is not Igclosed set in X.

The following proposition illustrates the relation between totally T^* -Ig-continuous and contra T^* -Ig-irresolute.

Proposition 3.21 Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is totally T^* -Ig-continuous then it is contra T^* -Ig-irresolute.

<u>Proof</u> Assume that f is totally T^* -Ig-continuous. Let B be any Ig-open set in Y, then $f^{-1}(B)$ is T^* -Ig-clopen set in X. Since every Ig-open is T^* -Ig-open, B is T^* -Ig-open, B y remark 2.1, $f^{-1}(B)$ is T^* -Ig-closed set in X. Therefore f is contra T^* -Ig-irresolute.

The converse of the a bove proposition need not be true as the following example shows.

Example 3.22 Let $X = \{a, b, c\}; T = \{\tilde{\emptyset}, \tilde{X}, A, B, C\}$ where $A = < x, \{a, b\}, \{c\} >, B = < x, \{b, c\}, \{a\} > and C = < x, \{b\}, \{a, c\} >.$ Let $Y = \{1, 2, 3\}; \Psi = \{\tilde{\emptyset}, \tilde{Y}, D, E\}$ where $D = < y, \{1, 3\}, \emptyset >$ and $E = < y, \{1\}, \{2\} >.$ Define a mapping $f: X \to Y$ by f(a) = f(c) = 3 and f(b) = 2. Let $F = \langle y, \{3\}, \{2\} \rangle$ is $T^* - Ig$ -open set in Y, then $f^{-1}(F) = \langle x, \{a, c\}, \{b\} \rangle$ is $T^* - Ig$ -closed set in X, since the only T^* in X that contain X only .So f is contra T^* -Ig-irresolute , but not totally T^* -Ig-continuous , since F is Ig-open set in Y.Then $f^{-1}(F)$ is asubset T^* in X is \bar{C} then I cl $^*f^{-1}(F) = X \subsetneq \bar{C}$. So is T^* -Ig-closed . But not T^* -Ig-open set .

Global Proceedings Repository American Research Foundation

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

I end this section by the following remark . **<u>Remark 3.23</u>** The notions contra T^* -Ig-irresolute function and T^* -Igirresolute function in ITS are independent notions. The following examples show the cases. <u>**Example 3.24**</u> Let $X=\{a,b,c\}; T=\{\tilde{\emptyset}, \tilde{X}, A, B, C\}$ where A = < $x, \{a, b\}, \{c\} >, B = < x, \{b, c\}, \{a\} > and C = < x, \{b\}, \{a, c\} >$. Let $Y=\{1,2,3\}; \Psi = \{\tilde{\emptyset}, \tilde{Y}, D, E, F\}$ where $D = < y, \{1,3\}, \emptyset >, E = <$ $y, \{2,3\}, \{1\} > and F = < y, \{3\}, \{1\} > . Define a mapping <math>f: X \to Y$ by f(a)=f(c)=1and f(b)=3 .I can see that f is T^* -Ig-irresolute , Let H = < $y, \{1\}, \{3\} > is T^*$ -Ig-closed set in Y. Since the only T^* in Y that contain H is D, then I cl * $H=H \subseteq D$, then $f^{-1}(H) = \langle x, \{a, c\}, \{b\} \rangle \subseteq X$ only. But is not T^* -Ig-open set in Y, so f is not contra T^* -Ig-irresolute . <u>**Example 3.25**</u> Recall example 3.14 it is clear that f is contra T^* -Igirresolute, but not T^* -Ig-irresolute, Since C is T^* -Ig-open set in Y. But is not T^* -Ig-closed set in Y.

IV-Perfectly contraT-intuitionistic generalized irresolute map an Intuitionistic topological spaces*

In this section, I introduce a new class of maps called perfectly contra T^* intuitionistic generalized irresolute maps which is included in the class of contra T^* -Ig-irresolute maps. I investigate some basic properties also. And I introduce a new kind of a map forms of intuitionistic irresolute maps and intuitionistic topological spaces namely perfectly contra Ig-irresolute(resp. perfectly contra Igs-irresolute, perfectly contra Ipsg-irresolute, perfectly contra Igps-irresolue, perfectly contra Igsp-irresolute and perfectly contra Isg-irresolute). And illustrate the relation a mong other kinds of perfectly contra T^* - intuitionistic generalized irresolute maps an intuitionistic topological spaces. As well as I give counter example for not true implications.

I start this section by the following definitions.

<u>Definition 4.1</u> A map $f: (X,T) \rightarrow (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called perfectly T^* - intuitionistic generalized-irresolute (perfectly T^* -Ig-irresolute) if the inverse image of every T^* -Ig-closed set in Y is both T^* -Ig-open and T^* -Ig-closed set in X.

Global Proceedings Repository American Research Foundation

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

Definition 4.2 A map $f: (X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called perfectly contra T^* - intuitionistic-irresolute (perfectly contra T^* -irresolute) if the inverse image of every T^* -Iopen set in Y is both T^* -Iopen and T^* -Iclosed set in X.

Definition 4.3 A map $f: (X,T) \rightarrow (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called perfectly contra generalized-irresolute (resp. perfectly contra Igs-irresolute, perfectly contra Isg-irresolute, perfectly contra Igsp-irresolute, and perfectly contra Igsp-irresolute) function if $f^{-1}(V)$ is both Ig-closed and Ig-open (resp. Igs-closed and Igs-open, Igsp-closed and Igsp-open) set in X for every Ig-open (resp. Igs-open, Igs-open, Igsp-open, Igsp-open, Igsp-open, Igsp-open) set V in Y.

Next Iam going to generalize the definition of perfectly contra T^* *-Ig-irresolute for ITS.*

Definition 4.4 A map $f:(X,T) \to (Y,\tau)$, where (X,T) and (Y,τ) are ITS is called perfectly contra T^* - intuitionistic generalized-irresolute (perfectly contra T^* -Ig-irresolute) if the inverse image of every T^* -Ig-open set in Y is both T^* -Ig-open and T^* -Ig-closed set in X.

In the following proposition there is characterization an intuitionistic perfectly contra T^* -Ig-irresolute function.

<u>Proposition 4.5</u> Amap $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly contra T^* -Ig-irresolute if and only if the inverse image of every T^* -Ig-open set in Y is both T^* -Ig-closed and T^* -Ig-open in X.

<u>Proof</u> Assume that f is perfectly contra T^* -Ig-irresolute. Let A be any T^* -Ig-open set in Y, then A^c is T^* -Ig-closed set in Y. Since f is perfectly contra T^* -Ig-irresolute, $f^{-1}(A^c)$ is both T^* -Ig-open and T^* -Ig-closed set in X. But $f^{-1}(A^c) = (f^{-1}(A))^c$ and so $f^{-1}(A)$ is both T^* -Ig-open and T^* -Ig-closed set in X.

Assume that the inverse image of every T^* -Ig-open set in Y is both T^* -Ig-open and T^* -Ig-closed, set in X. Let V be any T^* -Ig-closed set in Y, then V^c is T^* -Ig-open set in Y. By assumption, $f^{-1}(V^c) = (f^{-1}(V))^c$ and so $f^{-1}(V)$ is both T^* -Ig-open and T^* -Ig-closed set in X. Therefore f is perfectly contra T^* -Ig-irresolute.

Global Proceedings Repository American Research Foundation

ISSN 2476-017X

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

The following proposition puts a necessary condition on perfectly contra T^* -Ig-irresolute to be contra T^* -Ig-irresolute . **Proposition 4.6** Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly contra T^* -Ig-irresolute then f is contra T^* -Ig-irresolute. **Proof** Assume that f is perfectly contra T^* -Ig-irresolute . Let A be any T^* -Ig-open set in Y, since f is perfectly contra T^* -Ig-irresolute , $f^{-1}(A)$ is T^* -Ig-closed set in X. Therefore f is contra T^* -Ig-irresolute .

The converse of proposition is not true in general as the following example shows.

Example 4.7 Recall example 3.22 I can see that f is contra T^* -Igirresolute, but not perfectly contra T^* -Ig-irresolute. Becouse $f^{-1}(F) = \langle x, \{a, c\}, \{b\} \rangle$ is T^* -Ig-closed set in X, but not T^* -Ig-open set. The following proposition gives simple relation between perfectly contra Ig-irresolute and perfectly contra T^* -Ig-irresolute.

<u>Proposition 4.8</u> If $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly contra Ig-irresolute then it is perfectly contra T^* -Ig-irresolute.

<u>Proof</u> Let $f: X \to Y$ be perfectly contra Ig-irresolute. Let A be any Igopen set in Y, then $f^{-1}(A)$ is both Ig-closed and Ig-open set in X. Since every Ig-open is T^* -Ig-open set, A is T^* -Ig-open set in Y. By, remark 2.1, $f^{-1}(A)$ is T^* -Ig-open and T^* -Ig-closed set in X. Therefore f is perfectly contra T^* - Ig-irresolute.

The converse of proposition is not true in general as the following example shows.

Example 4.9 Recall example 3.12 since $B=f^{-1}(C) = \langle x, \{3\}, \emptyset \rangle \notin Ig$ -closed set in X, so f is not perfectly contra Ig-irresolute. But f is perfectly contra T^* - Ig-irresolute.

The following result I prove that perfectly contra Ig-irresolute gives contra T^* -Ig-continuous.

<u>Proposition 4.10</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly contra Ig-irresolute then it is contra T^* -Ig-continuous.

<u>**Proof**</u> Let $f: X \to Y$ be perfectly contra Ig-irresolute map. Let B be any Ig-open set in Y. Since f is perfectly contra Ig-irresolute ,then $f^{-1}(B)$ is

Global Proceedings Repository American Research Foundation

شَبّكةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

both Ig-closed and Ig-open set in X. By remark 2.1, $f^{-1}(B)$ is T^* -Ig-closed set in X. Hence f is contra T^* -Ig- continuous.

The converse of the a bove proposition need not be true as the following example shows.

Example 4.11 Recall example 3.22 show that f is contra T^* -Ig-continuous , but not perfectly contra Ig-irresolute. Since $F = \langle y, \{3\}, \{2\} \rangle$ is Ig-open set in Y, then $f^{-1}(F) = \langle x, \{a, c\}, \{b\} \rangle$ is not Ig-open set in X.So f is not perfectly contra Ig-irresolute.

The following result I prove that is perfectly contra T^* -irresolute gives perfectly contra T^* - Ig-irresolute.

<u>Proposition 4.12</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly contra T^* -irresolute then it is perfectly contra T^* - Ig-irresolute. **<u>Proof</u>** Let $f: X \to Y$ be perfectly contra T^* -irresolute. Let A be any T^* Iopen set in Y. Since f is perfectly contra T^* -irresolute, then $f^{-1}(A)$ is both T^* -Iclosed and T^* -Iopen set in X. By remark 2.1, $f^{-1}(A)$ is both T^* -Ig-closed and T^* -Ig-open set in X. Hence f is perfectly contra T^* -Ig-irresolute.

However the converse is not true as shown by the following example. <u>Example 4.13</u> Recall example 3.9 it clear that f is perfectly contra T^* -Ig-irresolute, Since $F = \langle y, \{2\}, \{3\} \rangle$ is T^* -Ig-open set in Y, then $f^{-1}(F) = \langle x, \{b, c\}, \emptyset \rangle$ is T^* -Ig-open and T^* -Ig-closed set in X. But f is not perfectly contra T^* -irresolute, becouse $F \subseteq T^*$ -Iopen set in Y and $f^{-1}(F)$ is not T^* -Iclosed and not T^* -Iopen set in X.

<u>**Remark 4.14**</u> The following example shows that perfectly contra T^{*}-Ig-irresolute map in ITS is independent from perfectly contra (Isp.irresolute, Isg-irresolute, Isemi-irresolute, Ipre-irresolute, Igsirresolute, Igsp-irresolute Ipsg-irresolute and Igps-irresolute) maps. I conclude from this example that :

1) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Igs-irresolute.

2) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Isg-irresolute.

3) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Ipsg-irresolute.

Global Proceedings Repository

American Research Foundation

ISSN 2476-017X

شَبِّكَةُ المؤتمَرَاتِ العَرَبِيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

4) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Igps-irresolute.

5) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Igsp-irresolute.

6) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra *Isemi-irresolute*.

Example 4.15 Recall example 3.12 I can see that f is perfectly contra T*-Ig- irresolute, but f is not perfectly contra Igs-irresolute (resp. perfectly contra Isg-irresolute, perfectly contra Ipsg-irresolute, perfectly contra Igps –irresolute, perfectly contra Igsp-irresolute and perfectly contra Isemi-irresolute).Since C is Igs-open (resp. Isg-open , Ipsg-open, Igps-open, Igsp-open and Isemi-open) set in Y,then $B = f^{-1}(C) = \langle x, \{3\}, \emptyset \rangle$ is not Igs-closed (resp. Isg-closed, Ipsgclosed, Igps-closed, Igsp-closed and Isemi-closed)set in X. Recall example 3.22 it clear that f is perfectly contra Igs-irresolute , but not perfectly contra T*-Ig-irresolute .

Example 4.16 Recall example 3.14 I can get the following : 1) f is perfectly contra T*-Ig- irresolute, but not perfectly contra Isp-irresolute.

2) f is perfectly contra T^* -Ig- irresolute, but not perfectly contra Ipre-irresolute.

It clear that f is perfectly contra T^* -Ig- irresolute, but f is not perfectly contra Isp-irresolute and perfectly contra Ipre-irresolute .Since ISPOX and IPOX in X, then Iint Icllint $B = X \subsetneq B$ and Icl Iint $B = X \subsetneq B$.

I show in this example that there is afunction f such that :

1) f is perfectly contra Igsp-irresolute, but not perfectly contra T^* -Ig-irresolute.

2) f is perfectly contra Isp-irresolute , but not perfectly contra T^* -Ig-irresolute.

Example 4.17 Recall example 3.15 from all above and definition of perfectly contra Igsp-irresolute and perfectly contra Isp-irresolute function that f is perfectly contra Igsp-irresolute and perfectly contra Isp-irresolute, f is not perfectly contra T^* -Ig- irresolute, since E is T^* -Ig- open set in Y. But its inverse image is not T^* -Ig-closed set in X.

In the next example I show that :

Global Proceedings Repository



http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

ISSN 2476-017X

1) f is perfectly contra Isg-irresolute, but not perfectly contra T^* -Igirresolute.

2) f is perfectly contra Ipsg-irresolute, but not perfectly contra T^* -Igirresolute.

3) f is perfectly contra Igps-irresolute, but not perfectly contra T^* -Igirresolute.

Example 4.18 Recall example 3.18 I can see that f is perfectly contra Isg-irresolute, perfectly contra Ipsg-irresolute and perfectly contra Igpsirresolute function. Since $P_4 = \langle y, \emptyset, \{2,3\} \rangle$ is Isg-open, Ipsg-open and Igps-open set in Y, then $\overline{Z}_1 = f^{-1}(P_4) = \langle x, \emptyset, \{c\} \rangle$ is Isg-closed, Ipsgclosed and Igps-closed set in X. But f is not perfectly contra T*-Igirresolute.

The following example shows that there is a perfectly contra Isemiirresolute function, which is not perfectly contra T*-Ig-irresolute function

Example 4.19 Let $X = \{a, b, c\}$; $T = \{\widetilde{\emptyset}, \widetilde{X}, A, B, C\}$ where $A = \langle x, \{c\}, \{a, b\} \rangle$ $B = \langle x, \{a\}, \{b, c\} \rangle$ and $C = \langle x, \{a, c\}, \{b\} \rangle$. Let $Y = \{1, 2, 3\}; \Psi = \{1, 2, 3\}; \Psi = \{1, 2, 3\}$ $\{\tilde{\emptyset}, \tilde{Y}, D, E\}$ where $D = \langle y, \{1\}, \{2,3\} \rangle$ and $E = \langle y, \{2,3\}, \{1\} \rangle$. Define a mapping $f: X \to Y$ by f(a)=f(b)=3 and f(c)=1. ISOX= $T \cup \{R_1, R_2\}$ R_3 , R_4 , R_5 } where $R_1 = \langle x, \{c\}, \{a\} \rangle, R_2 = \langle x, \{a, c\}, \emptyset \rangle, R_3 = \langle x, \{c\}, b \rangle$ $x, \{b, c\}, \{a\} >, R_4 = < x, \{a\}, \{c\} > and R_5 = < x, \{a, b\}, \{c\} >. ISOY = \Psi$. It is easily to satisfy that f is perfectly contra Isemi-irresolute, but f is not perfectly contra T^* -Ig-irresolute, since the only IOS in T^* of X, that contain $A = f^{-1}(D) = \langle x, \{c\}, \{a, b\} \rangle$ is A and C, but I cl^{*} $A = \langle x, \{c\}, \{a\} \rangle$ is not contained on A or C.

In the following example I show perfectly contra Ipre -irresolute function, but not perfectly contra T^* -Ig-irresolute function. **Example 4.20** Let $X = \{a, b, c\}; T = \{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where $A = \langle x, \{a\}, \{b\} \rangle$ and $B = \langle x, \{a, b\}, \emptyset, \rangle$ Let $Y = \{1, 2, 3\}; \Psi = \{\tilde{\emptyset}, \tilde{Y}, C, D, E\}$ where $C = \langle v, v \rangle$. Define a mapping $f: X \to Y$ by f(a)=1 and f(b)=f(c)=3. IPOX= $T \cup$ $\{P_i\}_{i=1}^{16} where P_1 = \langle x, \{a\}, \emptyset \rangle; P_2 = \langle x, \{a\}, \{c\} \rangle; P_3 = \langle x, \{a, b\}, \{c\} \rangle; P_4 = \langle x, \{a, b\}, \{c\} \}; P_4 = \langle x, b\}, \{c\} \}; P_4 = \langle x, b\}, P_4 = \langle x, b\},$ $\langle x, \{a, c\}, \emptyset \rangle$; $P_5 = \langle x, \{c\}, \{a, b\} \rangle$; $P_6 = \langle x, \{b\}, \emptyset \rangle$; $P_7 =$ $\langle x, \{a, c\}, \{b\} \rangle; P_8 = \langle x, \{a\}, \{b, c\} \rangle; P_9 = \langle x, \{b, c\}, \emptyset \rangle; P_{10} =$ $\langle x, \{b, c\}, \{a\} \rangle; P_{11} = \langle x, \{c\}, \emptyset, \rangle; P_{12} = \langle x, \{c\}, \{a\} \rangle; P_{13} =$ $\langle x,\{c\},\{b\}\rangle\,;P_{14}=\langle x,\emptyset,\{b,c\}\rangle;\ P_{15}=\langle x,\emptyset,\{b\}\rangle\ and\ P_{16}=\langle x,\emptyset,\{c\}\rangle\,.$ $IPOY = \Psi \cup \{Q_i\}_{i=1}^5 \text{ where } Q_1 = \langle y, \{2\}, \emptyset \rangle; \ Q_2 = \langle y, \{2\}, \{3\} \rangle; \ Q_3 = \langle y, \{2\}, \{3\} \rangle; \ Q_3 = \langle y, \{2\}, \{3\} \rangle$

Global Proceedings Repository American Research Foundation

ISSN 2476-017X

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

 $\langle y, \{1,2\}, \emptyset \rangle$; $Q_4 = \langle y, \{1,2\}, \{3\} \rangle$ and $Q_5 = \langle y, \{2,3\}, \emptyset \rangle$. Let D is Ipre-open set in Y, then $P_8 = f^{-1}(D) = \langle x, \{a\}, \{b,c\} \rangle$ is both Ipre-open and Ipreclosed set in X. So f is perfectly contra Ipre -irresolute, but not perfectly contra T^{*}-Ig-irresolute, because D is T^{*} -Ig-open set in Y, then $P_8 \subseteq A, B$, P_8 and P_4 , I cl^{*} $P_8 = \langle x, \{a,c\}, \{b\} \rangle \subseteq A, B$ and P_8 .

The following result I prove that perfectly Ig -continuous gives perfectly contra T^* -Ig-irresolute.

<u>Proposition 4.21</u> Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is perfectly Ig-continuous then it is perfectly contra T^* - Ig-irresolute. <u>Proof</u> Let $f: X \to Y$ be perfectly Ig-continuous. Let A be any Ig-open set in Y, then $f^{-1}(A)$ is both Iclosed and Iopen set in X. Since every Ig-open is T^* -Ig-open set, A is T^* -Ig-open set in Y. By remark 2.1, $f^{-1}(A)$ is both T^* -Ig-closed and T^* -Ig-open set in X. Hence f is perfectly contra T^* -Ig-irresolute.

However the converse is not true as shown by the following example. **Example 4.22** Recall example 3.12 I can see that f is perfectly contra T^{*}-Ig-irresolute, but not perfectly Ig-continuous. Since C is Ig-open set in Y, then $B = f^{-1}(C)$ is Iopen but not Iclosed set in X The following proposition puts a necessary condition on totally T^{*}-Igcontinuous to be perfectly contra T^{*}-Ig-irresolute. **Proposition 4.23** Amapping $f: X \to Y$ from an intuitionistic topological space (X, T^*) in to an intuitionistic topological space (Y, τ^*) is totally T^{*}-Ig-continuous then f is perfectly contra T^{*}-Ig-irresolute. **Proof** Assume that f is totally T^{*}-Ig-continuous .Let A be any Ig-open set in Y. By remark 2.1, A is T^{*}-Ig-open set in Y. Since f is totally T^{*}-Igcontinuous, $f^{-1}(A)$ is T^{*}-Ig-clopen set in X. Therefore f is perfectly

contra T*-Ig-irresolute .

The converse of proposition is not true in general as the following example shows.

<u>Example 4.24</u> Recall example 3.7. I can see that f is perfectly contra T^* -Ig-irresolute, but not totally T^* -Ig-continuous.Since $\overline{C} = \langle y, \emptyset, \{a\} \rangle$ is not Ig-open set in Y.

I end this section by the following remark.

Global Proceedings Repository American Research Foundation

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

<u>**Remark 4.25**</u> The notions perfectly contra T^* -Ig-irresolute function and perfectly T^* -Ig-irresolute function in ITS are independent notions. The following examples show the cases.

Example 4.26 Recall example 3.14 it is clear that f is perfectly contra T^* -Ig-irresolute. Let C is T^* -Ig-open set in Y. then $B = f^{-1}(C) = \langle x, \{a\}, \emptyset \rangle$ is T^* -Ig-closed and T^* -Ig-open set in X. But is not perfectly T^* -Ig-irresolute because C is not T^* -Ig-closed set in Y. Since the only T^* in Y that contain C is C, D and $Q_4 = \langle y, \{1,3\}, \{2\} \rangle$, but I cl^{*} $C = \langle y, \{1,2\}, \emptyset \rangle \subsetneq C, D$ and Q_4 .

Example 4.27 Let $X = \{a, b, c\}; T = \{\widetilde{\emptyset}, \widetilde{X}, A, B\}$ where $A = \langle x, \{c\}, \{a, b\} \rangle$ and $B = \langle x, \{c\}, \emptyset \rangle$ Let $Y = \{1, 2, 3\}; \Psi = \{\widetilde{\emptyset}, \widetilde{Y}, D, E\}$ where $D = \langle y, \{1, 3\}, \emptyset \rangle$ and $E = \langle y, \{1\}, \{2\} \rangle$ Define a mapping $f: X \to Y$ by f(a) = 2, f(b) = 3 and f(a) = 1. I can see that f is perfectly T^* -Ig-irresolute, but not perfectly contra T^* -Ig-irresolute. Since $\overline{E} = \langle y, \{2\}, \{1\} \rangle$ is T^* -Igclosed set in Y. But is not T^* -Ig-open set in Y.

REFERENCES

- Al-Omari , A. and Nooroni, M. S.(2009) "On generalized b-closed sets" Bull. Malays. Soc.(2) 32(1), pp.19-30.
- [2] Caldas, M. and Jafari, S.(2006) "Weak and strong forms of β -irresoluteness" The Arabian , J. for sci and E. ,Vol 31, No 1 A , pp. 31-39.
- [3] Coker, D.(1996) "Anote on intuitionistic sets and intuitionistic points" Tr. J. of Math . 20, pp. 343-351.
- [4] Dontchev, J.(1996) "Contra –continuous functions and strongly S-closed spaces" Int. J. Math. and Math. Sci. Vol. 19 No. 2, pp. 303-310.

Global Proceedings Repository

ISSN 2476-017X

بُرْكُرَاتِ العَرَيْيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

- [5] Dunham, W. (1982) "A new closure operator for non-T₁ topologies" kyungpook Math. J. 22, pp. 55-60.
- [6] Eswaran, S. and pushpalatha, A. (2009) "T*-generalized continuous maps in topological spaces" Int. J. of Math. Sci. and Engineering Applications, Vol. 3, No. IV, (will be published in December 2009 issue).
- [7] Levine, N. (1970) "Generalized closed sets in topology" Rend. Circ. Mat. Palermo, 19, 2, pp. 89-96.
- [8] Noiri, T. and Popa, V. (2005) "Some properties of a lmost contra-pre continuous functions" Bull. Malays. Moth. Sci. Soc. (2) 28(2), pp. 107-116.
- [9] Miguel, Caldas, C. (2000) "Weak and strong forms of irresolute "Int. J. Math. Sci. Vol. 23. No. 4, pp. 253-259.
- [10] Pushpalatha, A. and Eswaran, S. and Rajar, P. (2009) "T*generalized closed sets in topological spaces" pro. of W. con. on Engineering, I SBN. pp. 978-988.
- [11] Pushpalatha, A. and Eswaran, S. (2010) "strongly forms of T*generalized continuous map in topological spaces" Int. J. contep. Math. Science, Vol. 5, no. 17, pp. 815-822.
- [12] Raoof, G. A. and Yaseen, Y. J. (2013) " Contra And Totally T^{*}T^{*}- Intuitionistic Generalized - Continuous Maps On Intuitionistic Topological Spaces " Tikrit J. of Pure Sci. 18 (2), pp. 436-444.
- [13] Raoof, G. A. (2008) "On generalized homeomorphism" between ITS" MSC. Tikrit uni. Thesis coll. Of Education.
- [14] Santhi , R. and Jayanth, D. (2010)"Contra generalized semipreopen mappings in intuitionistic fuzzy topological spaces" J. of ISSN. 2090-388 X online ,Vol. 1,No. 2, pp. 1-8.
- [15] Sakthivel, K.(2010)"Intuitionistic fuzzy Alpha generalized continuous mappings and intuitionistic Alpha generalized irresolute mappings" A. Math.Sci., Vol. 4, No. 37, pp. 1831-1842.

تعميم الدوال الغير قابلة للحل الحدسية العكسية من النمط - *T وتعميم الدوال الغير قابلة للحل الحدسية العكسية ألتامة من النمط -*T في الفضاءات التبولوجية الحدسية.

أسماء غصوب رؤوف

المستخلص

Global Proceedings Repository American Research Foundation

بُرْتَمَدَاتِ العَرَيْيَةِ

http://arab.kmshare.net/

Available online at http:// proceedings.sriweb.org

في هذا البحث قدمت صنفاً جديداً من الدوال و هي تعميم الدوال الغير قابلة للحل الحدسية العكسية من النمط - *T في الفضاءات التبولوجية الحدسية وبعض خصائصها وعلاقاتها قد درست . من خلال هذا ألمفهوم قدمت صنفاً جديداً من الدوال هي تعميم الدوال الغير قابلة الحل الحدسية التامة من النمط - *T في الفضاءات التبولوجية الحدسية . ايضاً قدمت عدة أنواع من هذه الدوال الغير قابلة للحل ودرست علاقتها مع بعضها وعلاقتها بالمفهوم الذي تم دراسته في هذا البحث.