The 10th International Scientific Conference
Under the Title
“Geophysical, Social, Human and Natural Challenges in a Changing Environment”
المؤتمر العلمي الدولي العاشر
تحت عنوان "التحديات الجيوفيزيائية والاجتماعية والانسانية والطبيعية في بيئة متغيرة"
http://kmshare.net/isac2019/

Using of Thymol for Export Preservative Fruits from Spoilage to the using from Consumer

Maha A. Al-Rejaboo
Mosul University/ College of Science/ Department of Biology
mahaalrejaboo@gmail.com

Abstract: Isolates of fungi were gathered from imported and damaged fruits of grapes, as well as orange and grapefruits respectively which were purchased from local markets. Then extracted thymol complex from thyme plant, then tested its frustration effect in growth some isolated fungi such as Fusarium graminearum which caused grape damage, and Penicillium nalgiovense which caused orange and grapefruit damage. Then explain that concentration of the extracted thymol from thyme plant (0.5 mg/ml) in the growth culture is killing for F. graminearum fungi, and (1.5mg/ml) concentration from growth culture is killing for P. nalgiovense fungi, normally the thymol complex become mutation and poison in the high concentration, and According to my previous study about the mutation effect for the thymol in fungal conidia Aspergillus amstelodami that the concentrations (25, 30 mg/ml) shows a mutation effect, after high repetition higher that the concentrations (25, 30 µg/ml) shows a mutation effect, after high repetition higher than the spontaneous mutation for null manipulated (negative control), while the low concentrations (10, 15, 20 µg/ml) not has any mutation effects.
For more safety we advise that use it to saving the fruits and crops which peeling its external capsule such as citric to avoid damage them during shipping, storage and exportation.

Key words: *Fusarium graminearum*, *Penicillium nalgiovense*, thyme, thymol, preservative fruit and crops.

Using thymol complex and saving the fruits which peeling its external capsule such as citric to avoid damage them during shipping, storage and exportation.

Key words: *Fusarium graminearum*, *Penicillium nalgiovense*, thyme, thymol, preservative fruit and crops.
Penicillium . Fusarium graminearum .

Introduction

Some fruits effected with spoilage early or when they stay for a long time before using. The delay in crops marketing because of these crops are surplus in those areas, so exported to other areas nearby or far from its areas, accelerate of spoilage them that they affected with fungi, bacteria, or insect disease and another injures which caused the early spoilage for exporting fruits, which caused huge wastages. Current fungi in the fruits belong for two genus Fusarium and Penicillium like Penicillium italicum wehner, P. digitatum cass, and Phytophthora citrophthora (Al-Shukri, 1994). So many researchers try to use preservative matters for keep fruits faraway from spoilage for bigger period, so we try to extract (thymol) from thyme plant Thymus spp it is wild plant spread in our countries(Iraq) in a large form. As well as, we see that study of some fungi which caused the crops spoilage especially the fruits which are peeling like the exporting citrus and kill them by using the thymol complex which is regard a Phenol complex which has high inhibition effect against the fungi ,the essential oils of thyme (Thymus vulgaris L.) inhibitory effect as highest antifungal activity aganus Aspergillus niger (200 ppm) and they noticed from GC and GC-MS thymol concentrate 30.91% from the thyme oil (Noshirvani and Fasihi, 2018), Where I was studied previously in doctorate dissertation (Al-Rejaboo, 2004) effect of thymol complex which extracted from thyme plant towards some fungi, where the extract frustrated 100% growth of the fungi Aspergillus fumigatus and A. niger on (1.5 mg/ml) concentration from the culture (two fungi isolated from chronic suppurative otitis media), the extract frustrated 100% growth of
Trichophyton mentagrophytes which isolated from skin scraping on (0.5 mg/ml) concentration from culture, the extract frustrated 100% growth of isolated A. flavus from corn seeds on (1 mg/ml) concentration from culture, but the extract frustrated 100% growth of isolated A. niger fungi from rice plant on (1 mg/ml) concentration.

So, we can see that thymol complex has a high frustration effect towards many fungi, therefore we see study its frustration effect towards the fungi caused fruits damage such as orange, grapefruit, and grape. According to my previous study about the mutation effect for the thymol in fungal conidia Aspergillus amstelodami that the concentrations (25, 30 µg/ml) shows a mutation effect, after high repetition higher than the spontaneous mutation for null manipulated (negative control), while the low concentrations (10, 15, 20 µg/ml) not has any mutation effects. the high concentrations of this matter (higher than 25µg/ml) regard as a mutation matter (Al-Rawi & Al-Rejaboo, 2010) so must use it as a preservative matter in low concentrations as well as avoid preserved the grains and food in this matter.

Materials and methods:

1- Isolate the fungi :

Isolated randomly some of the pollution and growing fungi on the imported crops which caused its spoilage from these crops orange, grapefruit and grape, where took a sample from these growths in aseptic conditions and inoculated in Petry dish consists of (PDA) (Potato Dextrose Agar) (Pitt and Hocking, 1985), the dishes incubating at 2±28c° for seven days, with continuing the results observe during ocubation period. The growing fungi isolates preserve in slant mediums till the diagnosis (Koneman.et al,1979;

2- Diagnosis of molds:

The growing fungi isolates ocubated on the PDA medium (PDA for seven days, and studied the general characterizes for every isolates from some sides like shape, color, and texture of the mediatised, and shape, color, and dimenesios of the conides, as well as used planting on glass slide technique, in addition to taking a sample from every mediatised and inoculated by using technique of the medium inoculation on the three basic medium for diagnosis as follows:

1- Czapek Yeast Extract Agar (CYA).
2- Malt Extract Agar (MEA).
3- 25% Glycerol Nitrate Agar (G25N).

These medium ocubated at 5, 25, 37 C° for seven days (Pitt and Hocking, 1997).

3- Extracting of the Thymol from thyme plant:

Obtaind of the alcoholic extract from leaves and flower blossoms powder for dry thyme plant by using Soxhelet and use Mythanol (MeOH) as a solvent. then filtering the MeOH extract as a normal extracting for avoid the sediments during stages of the extract, and then the output dry by vertigo evaporator and melt in 100 ml from HCL acid in concentration of M 0.02, the grays separated with Chlorophyll rests by Petroleum ether in suitable size by using Separatory Funnal, this step repeated many times, the water layer took and pulled from it the phynol complexes by adding 50 ml from
Diethyl ether (DEE), the layer of (DEE) which enrich with the phynols and organic acids separated and gathering in the glass jug (Sousek et al, 1999). then submitted to hydrolysis operation in the basic media (10% NaOH) under the ebullition and direct increasing for on hour or more according to the sample size, then leave for 24 hours for completing the reaction, and after that equivalence with lighting HCL by observe the variation in the sunflower leave color, and the extracted the phynol and organic complexes by DEE and by using the separating funnel, after that the DEE dry by adding a suitable quantity from non water CaCl2 and melding good in the separating funnel, so we have two layers, took the DEE layer and measured its concentration by UV Scanning Spectrophotometer, and know its absorbing and Landa max (nm) and compare it with its absorbing and (nm) for trading thymol regard it as Standard (Al- Rejaboo, 2004) according to the following equation:

\[C_n = \frac{A_nC_1}{A_1} \]

Where:

C1 the knowing matter concentration
A1 knowing matter absorbing
Cn ignoring matter concentration
An ignoring matter absorbing
Measured IR for thymol extract.
4- Test of Thymol extract effect on the fungi:

Isolated Fungi medium took in age of seven days which ocubated at 25 °C under aseptic conditions, take disks in 5mm diameter from the external fungal colony, then every disk put on medium of PDA adding to it thymol extract in concentrations (0, 0.1, 0.5, 1, 1.5, 2, 2.5) mg/ml from the plantation medium where as followed the law N1V1= N2V2 for medium those concentrations depending to the standard solution for thymol in concentration 10 mg/ml lk DDE (Diethyl ether) which aseptic by pasteurization. Used three repeated for every concentration and ocubated at 25°C for seven days, the results were recorded.

Results and Discussion:

The growing fungi were isolated on some of the spoilage imported fruits which took randomly from the local markets includes orange, grapefruit, and grape, where isolate some fungi from them which belong the genus: *Fusarium* and *Penicillium*, and then diagnosis their species depending on the differential mediums MEA, G25N2 and CYA at 5 °C, 25 °C, 37 °C, for seven days, then note the cultural characteristics and microscopic characterizes for the fungi mediated like shape, color, texture and size, shape of spores depending on the classification key (Pitt & Hocking, 1997).

showing that the fungi is *F. graminearum* which isolated from the greap., and the fungi *P. nalgiovense* which isolate from orange and grapefruit as showing in the picture (1), also, the diagnosis of these two fungi depended on glass slide technique.
Picture (1)

Diagnosis of fungi *Pencillium nalgiovenese* by differential media (CYA, G25N, MEA) at 5, 25, 37 °C for seven days.

Thymol complex extracted from thyme plant and discovering by using spectrums IR figure (B-1) see that thymol which existence in the thyme is a mixture from raw thymol with its ester derivations (ester groups show absorbing in (1730 cm⁻¹ – 1745 cm⁻¹) table (1), so, when study its frustration effect towards fungi subject of the study, didn’t show any action towards it, after carrying out the hydrolyses in the basis medial of the extract, the absorbing which belong to the ester carbonelic group was disappear (figure c-1), it is same to the commercial thymol spectrum (A-1), we can see values absorbing of IR spectrum for each of commercial thymol and extract from the thyme plant before operation of the hydrolysis purifying and after it (table 1), after this using absorbing spectrums of U.V. as shown in figure (2)
(A) absorption

(B) absorption

(C) absorption
Figuer(1) : IR absorbing:
(A) commercial thymol.
(B) extracted thymol from thyme before hydrolysis and purifying.
(C) extracted thymol from thyme after hydrolysis and purifying.

Table (1): Values of absorbing spectrum IR for each of: commercial thymol (standard), extracted thymol from thyme before and after hydrolysis and purifying.

<table>
<thead>
<tr>
<th>Absorbing CO-</th>
<th>Absorbing CO₂-</th>
<th>Aromatic epithit</th>
<th>Curving C-O</th>
<th>Typical absorbing for Benzene ring</th>
<th>v CH-</th>
<th>v O-H</th>
<th>Thymol source</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>790-880</td>
<td>1050-1100</td>
<td>1676-1480-1400</td>
<td>2990-2850 Strong band</td>
<td>3450-3500 Wide band</td>
<td>Thymol Commercial (standard)</td>
</tr>
<tr>
<td>1745 Carbonyl group CO-</td>
<td>2400 Middle severity band for CO₂-</td>
<td>750-850</td>
<td>1050-1100 Split absorbing indicative on ether group C – O</td>
<td>1580-1490-1430</td>
<td>2992-2860 Strong band</td>
<td>3450-3500 Wide band</td>
<td>Thymol Extracted from thyme plant after purifying operation</td>
</tr>
</tbody>
</table>
Thymol Extracted from thyme plant before purifying operation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1050-1100 Split absorbing indicative on ether group C – O</th>
<th>1660-1580-1480-1393</th>
<th>3000-2900</th>
<th>3400-3500 Wide band</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>790-890</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure(2)
U.V. Scanning spectrophotometer by using DEE solvent

Up curve is the extract thymol
Down curve is the commercial thymol

To protect the crops from spoilage during the transportation and marketing till reach to the consumers, then test effect of the thymol extract on the two fungi for possibility of using as a preservative matter, the table
(2) showing that thymol extract concentration in 0.5 mg/ml from media didn’t show fungi grow comparing with diameter of the standard colony 8.4 cm, while the diameter of the fungi colony 5.8 cm at concentration 0.1 mg/ml for the fungi F. graminearum, while the fungi P. nalgiovense which isolated from orange the diameter of the colony was 0 cm at the 1.5 mg/ml and concentration 2.6 cm at concentration of 1 mg/ml, 5.3 cm at the concentration of 0.1 mg/ml while diameter of the comparing colony is 5.6 cm, while diameter of the fungi colony P. nalgiovense which isolated from grapefruit 0 cm at concentration of 1.5 mg/ml and 2.4 cm at concentration of 1 mg/ml and 3.6 cm at the concentration of 0.1 mg/ml, while diameter of the comparison colony (standard colony) is 5.8 cm as showing in the picture (2).

From observe the percentage of effect thymol on these fungi which showing in the table (3) we see that the fungi F. graminearum inhibited 100% at 0.5 mg/ml concentration, the fungi P. nalgiovense which isolated from orange inhibited 100% at 1.5 mg/ml concentration, and P. nalgiovense which isolated from grapefruit inhibited 100% at 1.5 mg/ml concentration. From here we can see that the thymol extract has clear inhibitory effect on these fungi at little concentrations especially towards the fungi Fusarium, and saw that there no big difference in the reacting of two fungi isolates P. nalgiovense toward the thymol extract.
Table (2)
Effect of the thymol extracting on average of isolated fungi mediatises diameters

<table>
<thead>
<tr>
<th>Thymol con. (mg/ml)</th>
<th>Fusarium graminearum</th>
<th>Penicillium nalgiovense</th>
<th>Penicillium nalgiovense</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Isolated from Grape</td>
<td>Isolated from Orange</td>
</tr>
<tr>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>comparison + DEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>2.6</td>
<td>4.3</td>
<td>5.3</td>
</tr>
<tr>
<td>0.1</td>
<td>2.4</td>
<td>2.8</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table (3)
Percentage of thymol effect on the isolated fungi from fruits

<table>
<thead>
<tr>
<th>Thymol Con. (mg/ml)</th>
<th>Fusarium graminearum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolated from Grape</td>
</tr>
<tr>
<td>2.5</td>
<td>% 100</td>
</tr>
<tr>
<td>2.0</td>
<td>% 100</td>
</tr>
<tr>
<td>1.5</td>
<td>% 100</td>
</tr>
<tr>
<td>1.0</td>
<td>% 100</td>
</tr>
<tr>
<td>0.5</td>
<td>% 100</td>
</tr>
<tr>
<td>0.1</td>
<td>% 31</td>
</tr>
<tr>
<td>comparison + DEE</td>
<td>% 0</td>
</tr>
<tr>
<td>0.1</td>
<td>% 0</td>
</tr>
<tr>
<td>0.1</td>
<td>% 0</td>
</tr>
<tr>
<td>% 100</td>
<td>% 100</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>% 100</td>
<td>% 100</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Picture (2)
Inhibitory effect of thymol extract on fungi *Penicillium nalgiovene* which isolated from orange.
Bennis and others (2004) found that mechanism of thymol inhibitory for fungi were in causing damages in the external shape for fungi cells where caused in cracks the cellular walls for the fungi Saccharomyces cerevisiae through observe clear cracks on the cellular walls for the fungi by electronic microscope, as well as, (Al-Rejaboo, 2004) found that the thymol extract from thyme has high inhibitory effect towards many fungi such as: Aspergillus flavus, A. funnigates, A. niger, Candida albicans, and Trichophyton mentagrophytes, , and point out that the effect was in pressing composing some proteins of the cellular wall, some researchers assuring that the thymol has high inhibitory effect towards some fungi(Pier. et al.2008), the researcher Sokovic and others (2009) mentioned that thymol has high inhibitory effect towards fungi Fusarium tricinctum, and Barrera and others (2009) noticed that thyme oil and thymol extract which extracted from it regard as a good fungi anti- biotic for fungi F. oxysporum, Dambolena and others (2008) found that thymol has a strong inhibitory effect towards F. verticillioides, Korukluogu and others (2009) that basil oil consist of mainly from thymol and it was strong in frustration towards fungi F. semitectum, Vazquez and others (2001) noticed that thymol frustrated growth of fungi Penicillum citrinum in the culture and in the cheese products, Klaric and others (2007) pointed out that thymol and its oil frustrated growth of Penicillum in concentration lower than 20 microgram/ml from the culture, observed that thymol which extracted from thyme oil or basil oil which rich in thymol have strong inhibitory effect towards species of Penicillum especially those which caused citrus spoilage, then found that strongest oil anti fungi especially Penicillum is thyme oil (Arras and Usai, 2001, Ameziane et al, 2007, Svirev.et al, 2007, Koruklouglu, et al, 2009 and Sokovic et al, 2009:).
And then found that thymol has inhibitory effect for some isolated fungi from the crops and food products as well as frustrated its vitality acting and its product for fungi toxin especially *Aspergillus flavus*, *A. parasiticus* this is useful in decreasing production of Aflatoxin poisons by the fungi which polluted crops and ensuring its safety during transportation and storage till reaching to the consumers. (Buchanan and Shepherd, 1981, Mahmoud, 1994, Couladis et al, 2004 and Razzaghi et al, 2008).

Braga and others (2007) and Liolios and others (2009) pointed out that chance of using thymol as a preservative matter for food products and crops, where noticed that high frustration acting towards fungi of *Candida* and *Listeria monocytogenes* which isolated from food and crops, but observed that thymol has side damages when increase its concentration, where become as a mutation matter by its effect on repeated and duplicate DNA (Mandel et al, 1985, Gringauz, 1987,), and caused some chromosomes deformations in rat bone marrow when use it in certain concentrations and for long periods (Sebile, 2008), and its using in huge quantities for a long periods caused the liver decay, where effect negatively on the animal cells metabolism (Baudoux, 2000, Al- Nouamy, 2004 and Al-Rawi and Al-Rejaboo, 2010) found that using thymol complex in concentrations of 25 microgram/ml and up may be mutate and poisonous, must care in using this matter as a preservative matter from the concentration and kind of the food product, fruits which peeling can use thymol in lower concentrations for preserving from spoilage and avoid use it for preserve the fruits which have thin teguments and grains which girding directly like wheat, barley and rice, and must take care that thymol complex is a basic component for some evaporating oils which product by the aromatic plants include thyme where its percentage in the oil from 36% to 55% (Manou et al, 1998 and Brunetton,
1999), the essential oils of thyme (Thymus vulgaris L.) inhibitory effect as highest antifungal activity aganus Aspergillus niger (200 ppm) and they noticed from GC and GC-MS thymol concentrate 30.91% from the thyme oil (Noshirvani and Fasihi, 2018), as well as the basil and many medical, pharmaceutical and food grasses, therefore must study safety of these grasses and take care in using thymol complex as a preservative matter.

Arabic Resources:
- الشكري، مهدي مجيد (1994)، مبادئ الفطرياادو مرميلاااد لفتبد، ةدملاا لفماداب ما لاي، ةدملاا لفماداب ما 464.
- النعيمدد، هاردداد (2004)، ئرلسااا الاام لفمتت اايلو لفب ف ة ااا اطلاا، ميكتاراا، لفثدام ل لفملزمل م لفمزلرع لفتم ج ا فتبدو لفحبا لفم ئلء، Nigelia sativa L.

References:
- Braga, P, C; Dalsasso, M,; Culici, M. and Alfieri, M,(2007), Eugenol and thymol, alone or in Combination, induce morphological alternations in the envelope of *Candida albicans* Fitoterapia. 78(6) 396-400.
- Buchanaa R.L. and Shepherd .AJ.(1991), Inhibition of Aspergillusparasiticus by thymol. Food Technologistsmc ,46(3) 976-977.
verticiHioides MRC 826 growth and fumonisin Bl, biosynthesis, Toxicon .51(1): 37-44.
-Manou, I,; Bouillard, L,; Devleschouwer, M. J. and Barel, A, O, (1998), Evaluation of the preservative properties of Thymus vulgar is essential oil in
topically applied formulations under a challenge test. Applied Microbiology., 84; 368-376.

ultrastructure of *Monilin'm fructicola*, Postharvest Biology and Technology, 45(2): 228-233.