Using Support Vector Machine "SVM" and Autoregressive Integrated Moving Average "ARIMA" to predict number of males and females who will be have Stroke at European Gaza Hospital

Khaled I.A. Almgharia Adnan Elsibakib

aa.almghari@up.edu.ps ba.sibaki@up.edu.ps

University of Palestine

Abstract

Stroke is among the world leading cause of morbidity and mortality and the principal cause of long-term disability. Stroke patients need to stay for long time at hospitals for treatment and rehabilitation. Hospitals should be prepared for receiving stroke patients. Stroke forecast prediction can contribute to better preparedness of hospitals in treatment of stroke which lead to improving the functional outcome of the patient, thereby decreasing the national expenses in health.

Gaza strip have a special case due to clashes escalation between Palestinian protesters and Israeli troops at the border of Gaza, because of that, the Ministry of Health at Gaza needs to temporary release patients from hospitals on Thursday weekly to receive hundreds of wounded people on Friday.

We used two methods of time series forecast: ARIMA and Support vector machine. Real data of stroke patient from European Gaza Hospital in Khan Younis city from 1/1/2012 to 31/03/2019 were used to
examine the forecasting accuracy of the models, our sample included all the patient hospitalized at hospital through the study period, which consists of (1141 patients) 521 Males and 620 females.

The main findings are SVM performs better than ARIMA method, therefore we used SVM to predict number of patients who will have stroke next nine months.

Keywords: Stroke, ARIMA, Support Vector Machine (svm), MASE, MPE, RMSE, KPSS,AIC.

1. Introduction

The incidence of stroke varies between developed country and developing countries in Europe countries these numbers equal 41 per 100,000 and at developing countries it varies from 27.5 to 63 per 100,000 but in north of Palestine was reported as 51.4 per 100,000. (Benamer et al.,2009[2]),(Sweileh et al.,2008[26])

There are many methods were used to predict time series data but the main challenge is to choose the accurate one, the emergency state is the main problem which faced the hospitals administrations, in this paper we used two methods in predictions, our data is brain stroke data, we want to use ARIMA method and SVM method to predict number of patients who will be have a brain stroke for next nine months and compare between these two methods to choose the best one, our finding were the SVM is performed better than ARIMA method.

This motivated us to use SVM method for prediction of futures brain stroke cases . Rest of the paper is organized as follows. In this section we gave some related works, in section 2 and section 3 we gave a brief description of ARIMA and SVM . Section 4 results and conclusions were discussed.

In 1960's up to few years ago, prediction models were used by researcher depending on time series analysis, however in this paper we used time series and machine learning methods such support vector machine,

(Shakti et al.,2017[19]) they conduct a study to predict annual automobile sales by using ARIMA models,(Das and Padhy,2012 [6]) they predict of futures prices in Indian stock market by using support vector machine techniques, (Mandle et al.2012 [14]),they predict a protein structure by using support vector machine,(Mandal et al.2014[15]), they study the effectiveness of time series modeling ARIMA in forecasting stock price at India markets, (Adebiyi et al.2014 [1]), they predict stock price by using ARIMA model from two different markets Nokia stock price and Zenith Bank stock price, (Kim,2003 [11]) , he predict a financial time series forecasting using support vector machine, (Yang et al.2017[27]) they predict bus arrival time by using support vector machine with genetic algorithm, (Samui et al.,2011 [19]), they predict rainfall in Vellore (India) by using support vector machine and relevance vector machine.

Data Source: data sets are collected from European Gaza hospital records in Khanyounis city from 01/01/2012 to 31/03/2019 with 521 males of brain stroke and 620 females of brain stroke.

2. Preliminaries

This section introduces some basic definitions and concepts

2.1 Autoregressive Integrated Moving Average(ARIMA) models:

ARIMA models can be divided into three stages as:

a) Identification stage.
b) Estimating and diagnosing stage.
c) Forecasting stage.
ARIMA model can be denoted by ARIMA(p,d,q) where:
- p is the order of autoregressive part
- d is the order of differencing part.
- q is the order of the moving average processing.

ARIMA model can be written as:

\[w_t = \mu + \frac{\theta(B)}{\phi(B)} a_t \] (2.1)

Where:
- \(t \) is the time.
- \(w_t \) is the response series \(Y_t \) or difference of response series.
- \(\mu \) is the mean.
- \(B \) is the backshift operator that is \(BX_t = X_{t-1} \).
- \(\phi(B) \) is the autoregressive operator where \(\phi(B) = 1 - \phi_1 B - \ldots - \phi_p B^p \)
- \(\theta(B) \) is the moving average operator where \(\theta(B) = 1 - \theta_1 B - \ldots - \theta_q B^q \)
- \(a_t \) is the independent random error.

2.2 Support Vector Machine (SVM)

Least Square Support Vector Machine (LS-SVM)

Suppose we have a training data set of N points \(\{ x_i, y_i \} \) with input data \(x_i \in \mathbb{R}^n \) and \(y_i \in \mathbb{R} \) then:

\[
\text{Minimize } d\left(\begin{array}{c} W \mid \epsilon \end{array} \right) = \frac{1}{2} \sum_{i=1}^{N} e_i^2 + \frac{1}{2} \sum_{i=1}^{N} e_i^2 \] (2.2)

Subject to \(y_i = w^T \varphi(x_i) + b + e_i, \forall i = 1,2,\ldots,N \)

Where:
- \(\varphi \) is the non-linear mapping to a higher dimension space.
- \(\gamma \) is the regularization parameter.

The primal space model of the optimization of equation (2) is given by:

\[y = w^T \varphi(x) + b \] (2.3)

The lagrangian for equation (2) is given by:

\[L(w,b,e;\alpha) = J(w,e) - \sum_{i=1}^{N} \alpha_i \{ w^T \varphi(x_i) + b + e - y_i \} \] (2.4)

Where:
- \(\alpha = [\alpha_1, \alpha_2, \ldots, \alpha_N]^T \) \(\alpha_i \geq 0 (\forall i = 1,2,\ldots,N) \) are the Lagrange multipliers.

The partial derivatives if \(L \) with respected to \(w, b, e_k, \alpha_k \) equate them to zero finally eliminate \(w, e_k \)

Then linear system we can express as:
\[
\begin{bmatrix}
0 & 1 \\
1^T & \Omega + \gamma^{-1}I
\end{bmatrix}_{(N+1)\times(N+1)}
\begin{bmatrix}
\alpha \\
b
\end{bmatrix}_{(N+1)\times1} =
\begin{bmatrix}
0 \\
y
\end{bmatrix}_{(N+1)\times1}
\]
(2.5)

Where:
\(\gamma > 0\) And it is the regularization parameter.
\(y = [y_1, y_2, \ldots, y_N], l = [1, l, \ldots, l]\)
\(\Omega(i, j) = k(x_i, x_j) (\forall i, j = 1, 2, \ldots, N)\)

Finally the LS_SVM decision function is given by:
\[
y(x) = \sum_{i=1}^{N} \alpha_i k(x, x_i) + b
\]
(2.6)

Where:
\(\alpha, b\) they are the solution of linear system

2.3 Dynamic Least Square Support Vector Machine (DLS_SVM) (Yugang.2006[28])

Yugang et al. (2006)[28] they create a Dynamic Least Square Support Vector Machine (DLS_SVM) from Least Square Support Vector Machine to used as time series forecasting, the main feature of DLS_SVM is that it can track the dynamics of non-linear time varying systems by deleting one existing data point whenever new observation added.

Suppose:
\[
Q_N = \begin{bmatrix}
0 & 1 \\
1^T & \Omega + \gamma^{-1}I
\end{bmatrix}_{(N+1)\times(N+1)}
\]
(2.7)

Now to solve equation (5) we need \(Q_N^{-1}\) and when new observation added to the existing training sets then \(Q_N\) becomes:
\[
Q_{N+1} = \begin{bmatrix}
Q_N & k_{N+1}^T \\
k_{N+1} & k_{N+1}^T
\end{bmatrix}_{(N+2)\times(N+2)}
\]
(2.8)

Where:
\(k_{N+1}^* = \gamma^{-1} + k(x_{N+1}, x_{N+1}) = \gamma^{-1} + 1, k_{N+1} = [1 + k(x_{N+1}, x_i)]^T, i = 1, 2, \ldots, N\)

Now we need to save computation time then matrix inversion lemma has been applied to calculate \(Q_{N+1}^{-1}\) as:
\[
Q_{N+1}^{-1} = \begin{bmatrix}
Q_N & k_{N+1}^T \\
k_{N+1} & k_{N+1}^T
\end{bmatrix} =
\begin{bmatrix}
Q_N^{-1} + Q_N^{-1} k_{N+1} k_{N+1}^T Q_N^{-1} & -Q_N^{-1} k_{N+1} \\
-k_{N+1}^T Q_N^{-1} & \rho^{-1}
\end{bmatrix}
\]
(2.9)

Where:
\(\rho = k_{N+1}^* - k_{N+1}^T Q_N^{-1} k_{N+1}\)
After we add new data and Q_{N+1}^{-1} has been known then we rearrange the training dataset as $[x_2, x_3, \ldots, x_{N+1}, x_1]$ to get the predicted matrix as:

$$
\hat{Q}_{N+1} = \begin{bmatrix}
\hat{Q}_N & k_1 \\
k_1^T & k_1^*
\end{bmatrix}
$$

(2.10)

Where:

$$
k_1^* = \gamma^{-1} + k(x_1, x_1) = \gamma^{-1} + 1
$$

$k_1 = [1, k(x_i, x_j)]^T, i = 1,2, \ldots, N,$

$$
\hat{Q}_{N+1} = \begin{bmatrix}
0 & 1^T \\
1 & \Omega + \gamma^{-1} I
\end{bmatrix}_{(N+1) \times (N+1)}
$$

with $\Omega = k(x_i, x_j), i, j = 1,2, \ldots, N + 1$

Then the inversion of equation (10) is equal to:

$$
\hat{Q}_{N+1}^{-1} = \begin{bmatrix}
\hat{Q}_N & k_1 \\
k_1^T & k_1^*
\end{bmatrix}^T
$$

(2.11)

Finally we can compute α, b from equation (5) with \hat{Q}_{N+1}^{-1} and repeat again and again until all the data exhausted.

3. Main Forecast Performance Measures

3.1 The Mean Squared Error (MSE)

Zhang (2003) [28] define the mathematical definition of this measure as:

$$
MSE = \frac{1}{n} \sum_{i=1}^{n} e_i^2
$$

The properties of MSE by Hamzacebi (2008) [9] are (12):

- It measures the average squared deviation of predicted data.
- MSE gives an idea of the errors occurred during forecasting.
- MSE emphasizes the total forecast error is in fact much affected by large individual errors.
- MSE affected by transformed of data.
- MSE is a good measure of overall forecast errors.
- Good forecasting gives minimum MSE.

They defined Mean Absolute Error (MAE) mathematically as:

$$
MAE = \frac{1}{n} \sum_{i=1}^{n} |e_i|
$$

(3.1)

The properties of MAE are:

- MAE measures the average absolute deviation of forecasted value from original one.
- It shows the magnitude of overall error.
- MAE doesn't give any idea about the direction of errors.
- MAE affected by transformed of data.
- Good forecasting gives minimum MAE.

3.3 The Root Mean Squared Error (RMSE)

(Mathematical Root Mean Squared Error (RMSE) can be defined as:

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$$

(3.2)

The RMSE properties are:
- It's measure the average squared deviation of predicted data.
- RMSE gives an idea of the errors occurred during forecasting.
- RMSE emphasizes the total forecast error is in fact much affected by large individual errors.
- RMSE affected by transformed of data.
- RMSE is a good measure of overall forecast errors.
- Good forecasting gives minimum RMSE.

3.4 The Mean Percentage Error (MPE)

(Mean Percentage Error (MPE) can be defined mathematically as:

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{e_t}{y_t} \right| \times 100$$

(3.3)

The RMSE properties are:
- It's a percentage measure of average absolute error.
- It's affected by transformed of data.
- Doesn't show direction of error.

Unit root test

Stationarity tests of series named unit root test and there are many indices for testing unit root test such: (Hyndman & Athanasopoulos(2018)[10]).

3.4.1 Dickey–Fuller tests:

From unit root hypothesis test one can distinguish series that appear to be stationary when it has a unit root. (Fuller,1976[7] ; Said & Dickey,1984[18]).

3.4.2 Augmented Dickey-Fuller test (Fuller .1976[9]):

It is an augmented version of Dickey Fuller test for a larger and more complicated set of time series models.

Augmented Dickey Fuller test computed as:
ΔY_t = β_1 + β_2 t + δY_{t-1} + ∑α_i ΔY_{t-i} + ε_t \quad (3.4)

Where:
ε_t is a pure white noise error term.

ΔY_{t-1} = (Y_{t-1} - Y_{t-2}) and so on.

Then the ADF test whether \(δ = 0 \)

3.4.3 Phillips Perron(pp) unit root test (Phillips & Perron, 1988[17]):

The Dickey Fuller test assumes that the error terms \(u_t \) are iid (independent and identical distribution) also takes care of possible serial correlation in the error terms by adding the lagged difference terms of the regressed. But in PP non parametric statistical methods is used to take care of serial correlation in the error terms without adding lagged difference.

The PP regression is:

\[ΔY_t = β^\prime D_t + θY_{t-1} + u_t \quad (3.5) \]

Where:

\(D_t \) is the deterministic components (constant or constant plus trend), \(u_t \) is I(0) and may be heteroskedastic.

Heteroskedastic means that the variance of the errors is not constant (Seddighi, Lawler & Katos, 2000[20]). Both in ADF and PP the stationary test tests the null hypothesis that a time series is stationary I(1).

3.4.5 KPSS test:

The most commonly used stationarity test, the KPSS test, is due to (Kwiatkowski et al., 1992[13]). They derived their test by starting with the model

\[Y_t = B_0 + B_1 t + θ_t + u_t \quad (3.6) \]

\[θ_t = θ_{t-1} + ε_t, \quad ε_t \sim WN(0, \sigma^2) \]

where \(u_t \) is stationary time series and is said to be integrated of order zero, I(0) and may be heteroskedastic. The null hypothesis that \(Y_t \) is I(0) is formulated as \(H_0: \sigma^2 \neq 0 \), which implies that \(θ_t \) is a constant.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-
seasonal.

Definition: The KPSS test statistic is the Lagrange Multiplier (LM) or score statistic for testing

\[H_0: \sigma^2 = 0 \text{ versus } H_1: \sigma^2 > 0 \]

and is given by

\[
KPSS = T^{-2} \sum_{t=1}^{T} \hat{S}_t^2 / \hat{B}^2
\]

(3.7)

Where \(\hat{S}_t^2 = \sum_{t=1}^{T} \hat{u}_t^2 \), \(\hat{u}_t \) is the residual of a regression \(Y_t \) on \(t \) and \(\hat{B}^2 \) is a consistent estimate of the long-run variance of \(\hat{u}_t \).

3.6 Definition: Akaike’s Information Criterion (AIC) (Shumway & Stoffer, 2018[23]).

\[
AIC = \log \hat{\sigma}_k^2 + \frac{n + 2k}{n}
\]

(3.8)

Where \(\hat{\sigma}_k^2 = \frac{\text{SSE}(k)}{n} \)

And SSE(k) denotes the residual sum of squares under the model with k regression coefficients.

k is the number of parameters in the model. The value of k yielding the minimum AIC specifies the best model, and n is the sample size.

3.6.1 Definition: AIC, Bias Corrected (AICc)

\[
AICc = \log \hat{\sigma}_k^2 + \frac{n + k}{n - k - 2}
\]

(3.9)

As with the AIC, the AICc should be minimized.

4. Results and discussion

From Fig. (1), Fig. (2) and Fig. (3) we illustrate that there is a trend in male and female data sets therefore we should remove this trend by differencing before start our analysis of data sets.

To ensure our previous results we run the diagnostic tests, our findings are in table (1), from this table the null hypothesis from ADF, PP, and DF is data for male and female are not stationary and from p.value we cannot reject null hypothesis so that both data sets are not stationary at their levels, these results met with Fig. (1), Fig. (2) and Fig. (3), but the null hypothesis for KPSS test is data does not need differences, from p.value of KPSS at table (1), we can reject null hypothesis for both data sets, therefore both data sets (Males and Females) need differences.

We run the first difference on both data sets our findings are in table (2), from this table our both data sets become stationary respected to KPSS, ADF, PP, and AD tests.

We run the criterion for selected the optimal ARIMA models for both data sets our findings are on table (3) and from this table we conclude that the optimal model for male data sets is ARIMA(0,1,1) because all the criterion are minimum but the optimal model for female data sets is ARIMA(1,1,1) because all the criterion are minimum.
To ensure our results we run auto arima model selection the results are met in both data sets our findings are in table (4). The results of ARIMA predicted values for both data sets are in table (5) and Fig. (4). We run SVM to predict value for both data sets and our findings are on Fig. (5). From table(6) we illustrate that SVM performed better than ARIMA method which gets the minimum error measures in both data sets, then we used SVM to predict the number of patients (males and females) who will have brain stroke from 1/4/2019 to 31/12/2019 at European Gaza Hospital in Khan Younis and our findings are maximum prediction of stroke patients was in next November and December (2019), where the numbers of patients are 33 for each month distributed as 24 males and 9 females, table (7).

5. Recommendations

Our recommendations are to use SVM instead of ARIMA method for prediction because it performs better than ARIMA method and our recommendation for administrative of European Gaza Hospital in Khan Younis to prepare themselves for these numbers of patient who will have a brain stroke for next nine months.
Graphing of time series for male data

Graphing of time series for female data

Fig.(1): Time series plot of stroke patients at European Gaza hospital from 1/1/2012 to 1/03/2019
Decomposition of additive time series

Fig(2): Time series components plot of stroke patients”Male” from 1/1/2012 to 01/03/2019.
Decomposition of additive time series

3): Time series components plot of stroke patients "Female" from 1/1/2012 to 01/03/2019.

Table (1) Diagnostic Time series results

<table>
<thead>
<tr>
<th>Diagnostic Time series results</th>
<th>Male data</th>
<th>Female data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test KPPS</td>
<td>P.value 0.01</td>
<td>Test KPPS</td>
</tr>
<tr>
<td>ADF</td>
<td>0.4265</td>
<td>ADF</td>
</tr>
<tr>
<td>PP</td>
<td>0.2331</td>
<td>PP</td>
</tr>
<tr>
<td>DF</td>
<td>0.2038</td>
<td>DF</td>
</tr>
</tbody>
</table>
Table (2) Diagnostic Time series results after differencing

<table>
<thead>
<tr>
<th>Unit root tests after differences</th>
<th>Male data</th>
<th>Female data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>P.value</td>
<td>Test</td>
</tr>
<tr>
<td>KPPS</td>
<td>0.1</td>
<td>KPPS</td>
</tr>
<tr>
<td>ADF</td>
<td>0.01</td>
<td>ADF</td>
</tr>
<tr>
<td>PP</td>
<td>0.01</td>
<td>PP</td>
</tr>
<tr>
<td>DF</td>
<td>0.01</td>
<td>DF</td>
</tr>
</tbody>
</table>

Table (3) Optimal ARIMA model

<table>
<thead>
<tr>
<th>Criteria of selecting ARIMA model</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>AIC</td>
<td>AICc</td>
</tr>
<tr>
<td>ARIMA(0,1,1)</td>
<td>358.07</td>
<td>358.23</td>
</tr>
<tr>
<td>ARIMA(0,1,0)</td>
<td>372.39</td>
<td>372.45</td>
</tr>
<tr>
<td>ARIMA(1,1,1)</td>
<td>358.87</td>
<td>359.21</td>
</tr>
<tr>
<td>ARIMA(0,1,2)</td>
<td>359.06</td>
<td>359.39</td>
</tr>
<tr>
<td>ARIMA(1,1,2)</td>
<td>360.8</td>
<td>361.36</td>
</tr>
</tbody>
</table>

Table (4) Optimal ARIMA model by auto.arima

<table>
<thead>
<tr>
<th>Optimal Auto.Arima</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>AIC</td>
<td>AICc</td>
</tr>
<tr>
<td>ARIMA(0,1,1)</td>
<td>358.07</td>
<td>358.23</td>
</tr>
</tbody>
</table>
Table (5) ARIMA forecast from 1/6/2018 to 31/3/2019

<table>
<thead>
<tr>
<th>Date</th>
<th>Forecast</th>
<th>Date</th>
<th>Forecast</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6/2018</td>
<td>19</td>
<td>1/6/2018</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>1/7/2018</td>
<td>19</td>
<td>1/7/2018</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>1/8/2018</td>
<td>22</td>
<td>1/8/2018</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>1/9/2018</td>
<td>19</td>
<td>1/9/2018</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>1/10/2018</td>
<td>20</td>
<td>1/10/2018</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>1/11/2018</td>
<td>23</td>
<td>1/11/2018</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>1/12/2018</td>
<td>24</td>
<td>1/12/2018</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>1/1/2019</td>
<td>22</td>
<td>1/1/2019</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>1/2/2019</td>
<td>28</td>
<td>1/2/2019</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>1/3/2019</td>
<td>28</td>
<td>1/3/2019</td>
<td>24</td>
<td>52</td>
</tr>
</tbody>
</table>
Fig(4): Arima forecast from 1/6/2018 to 31/3/2019.
Table (6) Error measures between ARIMA and SVM

<table>
<thead>
<tr>
<th>Error measures</th>
<th>ARIMA</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>mae</td>
<td>5.92</td>
<td>4.68</td>
</tr>
<tr>
<td>mse</td>
<td>49.29</td>
<td>36.52</td>
</tr>
<tr>
<td>rmse</td>
<td>7.020684</td>
<td>6.043178</td>
</tr>
<tr>
<td>mape</td>
<td>0.3366809</td>
<td>0.218675</td>
</tr>
</tbody>
</table>

Forecast for Males

![Forecast for Males](image-url)
Fig(5): SVM forecast from 1/6/2018 to 31/3/2019.
Table(7) SVM prediction from 1/4/2019 to 31/12/2019

<table>
<thead>
<tr>
<th>Date</th>
<th>≈Male</th>
<th>≈Female</th>
<th>≈Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4/2019</td>
<td>8</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>1/5/2019</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1/6/2019</td>
<td>10</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1/7/2019</td>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1/8/2019</td>
<td>18</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>1/9/2019</td>
<td>21</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>1/10/2019</td>
<td>23</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>1/11/2019</td>
<td>24</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>1/12/2019</td>
<td>24</td>
<td>9</td>
<td>33</td>
</tr>
</tbody>
</table>

References:

